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Abstract

Random-coefficient multinomial logit models are widely applied to study discrete
choices in economics. By assuming random coefficients for each individual, the mod-
els can account for unobserved individual heterogeneity and suggest more realistic
substitution patterns, compared to standard logit models. In this paper, I find that
random coefficients become undetectable (i.e., estimated variances are zero) even if
they exist, as many observed individual covariates are incorporated. Having zero
estimates of variances not only yields bias in estimating other parameters but also
raises the concern of parameters on boundary. To address these issues, I propose ;1-
regularized maximum likelihood estimation for simultaneous covariate selection, and
develop a debiased machine learning estimator to correct regularization bias while
accounting for parameter constraints, such as non-negativity of variance. I derive
non-asymptotic probability bounds for the regularized estimator and limiting distri-
butions for the debiased estimator. Finally, I validate the estimators with thorough
Monte Carlo simulations, and illustrate the impacts of high-dimensional covariates in
an application to soft-drink markets in North Carolina.
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1 Introduction

The random-coefficient multinomial logit (RC-Logit) model is a highly flexible model that

can approximate any discrete choice model derived from random utility maximization

under mild regularity conditions (McFadden and Train, 2000; Train, 2002). Compared to

standard logit estimation of choice models, the RC-Logit model relaxes the assumption

of the independence of irrelevant alternatives (IIA), allows different coefficients for each

individual, and suggests more realistic substitution patterns1. As a consequence, the

RC-Logit model and its variants have become popular across fields including health

economics (Ho, 2006; Hall et al., 2006; Ericson and Starc, 2012; Hole and Kolstad, 2012),

transportation economics (Hess et al., 2005; Train and Winston, 2007; Léon and Miguel,

2017) and industrial organization.

In industrial organization literature, one well-known example is the differentiated

product demand model developed by Berry et al. (1995, BLP1995 henceforth). Numerous

studies are based on the framework in BLP1995, for example, Nevo (2000a,b); Berry et al.

(2004a); Goolsbee and Petrin (2004); Dubois et al. (2018); Conlon and Gortmaker (2020,

2023). In the model, the indirect utility

*8 9 = -
′
9�8 − 
%9 + �9 + �8 9 (1.1)

of consumer 8 purchasing product 9 depends on exogenous product characteristics -9 ,

price %9 and an unobserved term �9 to researchers that is correlated to the price (e.g., the

quality of a product). The random coefficient �8 can be decomposed as �8 = �G+Π!8+Σ�8 ,

where !8 is the observed individual demographics, and random coefficient �8 captures

1The IIA assumption implies that the ratio of choice probabilities between any two options remains
unchanged if an option is added or removed from the choice set. As an example, in the classic red bus-blue
bus problem under a standard logit model, suppose that the market shares of trains and red buses are each
50%. Then, introducing blue buses, which are identical to red buses except for color, will decrease the shares
of trains and red buses to 33%. The RC-Logit model can address this issue by capturing the unobserved
individual preferences on transportation options.

2



the remaining unobserved individual heterogeneity, which is assumed to follow a known

distribution such as the standard normal distribution. After estimating2 parameters on

preference (i.e., 
, �G , Π and Σ in Eq.(1.1)), researchers can calculate price elasticities and

conduct welfare analysis (e.g., Gowrisankaran et al., 2015).

In this paper, I consider RC-Logit models in the scenario that many observed char-

acteristics of individuals are available in datasets, but not all of them are known to be

relevant to research topics. With advancements in collecting information (e.g., in-home

scanners and online surveys), researchers may have access to detailed individual-level

data consisting of choices and characteristics. For instance, the consumer panel dataset

from NielsonIQ records household-level purchases, and its complementary dataset pro-

vides demographic variables such as income, gender, race, education aswell as occupation

of household members. Researchers can include covariates based on their expertise, such

that the model is expected to be correctly specified or at least include the most important

covariates to mitigate omitted variable bias.

Nonetheless, selecting covariates into models can be challenging when there are hun-

dreds of covariates in a dataset, and it is risky to include too many covariates in a model

which makes the model over-parameterized. First, traditional estimation methods such

as simulated maximum likelihood estimation (MLE) and simulated method of moments

(SMM) are consistent but may be biased, and the bias is non-ignorable when the sample

size is relatively small compared to the number of covariates. Second, the estimated hes-

sian matrix can be singular or ill-conditioned in this context, leading to invalid standard

errors. Third, particularly in RC-Logit models, including many covariates can yield a

downward bias in estimating variances of random coefficients due to overfitting. Recall

that random coefficients capture unobserved heterogeneity, so they can be degenerate

2Notably, BLP1995 allows researchers to estimate demand using only macro-level data such as market
shares and demographic distributions. However, incorporating micro-statistics, such as consumers’ second
choices and the average number of kids in a household that purchases a minivan, may significantly reduce
variances of the estimators and tighten substitution patterns (Petrin, 2002; Berry et al., 2004a; Nurski and
Verboven, 2016). See Conlon and Gortmaker (2023, Table 1) for a comprehensive summary of papers using
micro BLP1995 estimators.
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when most of the heterogeneity is adequately explained by many covariates. It is also

possible that the included covariates are irrelevant or not sufficient, so the unobserved

heterogeneity continues to exist. Regardless of the covariates, however, overfitting can

mask the random coefficients and suggest using multinomial logit models instead3.

As a solution to overfitting, adding regularization to the objective function can help

select variables simultaneously (and potentially address the singularity issue), but it will

also introduce regularization bias to the estimators and the bias is less understood in RC-

Logit models (cf. high-dimensional linear models). To conduct valid statistical inference,

researchersmust first debias their regularized estimators. Note that inference for RC-Logit

models is non-standard due to constraints on parameters related to random coefficients,

for instance, standard deviations must be non-negative. When the true parameters lie on

(or near) the boundary of the parameter space (e.g., �0 = 0 in Θ = [0,∞)), the estimators

are not asymptotically normal in general.

In this paper, I offer solutions to these challenges by integrating the literature of high-

dimensional inference and inference on the boundary. For estimation, I recommend

using the ;1-regularized maximum likelihood estimation (RMLE) approach to select high-

dimensional parameters, which remains effective even in the presence ofmulti-collinearity

and endogeneity. Since the ;1-penalty is non-differentiable at zero, algorithms such as

BFGS and Newton-Raphson may fail. To address this, I propose a proximal gradient

descent algorithm that accommodates box constraints. Note that the contractionmapping

in BLP1995 can be implemented together with the algorithm but with extra cost. For

inference, I build on Li (2024) and develop a constrained debiased machine learning

(CDML) estimator, which is constructed from the first-stage RMLE. To prevent potential

overfitting in the RMLE, I implement a K-fold cross-fitting procedure. As an M-estimator

for low-dimensional target parameters, the CDML estimator solves a Neyman orthogonal

score function, subject to constraints such as the non-negativity. I also propose a quasi-

3As demonstrated in my simulation studies, incorporating many individual covariates can yield zero
estimated variances of random coefficients.
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likelihood ratio (QLR) test for hypothesis testing whose critical values can be computed

through simulations.

The first contribution of this paper is the derivation of non-asymptotic probability

bounds for RMLE. To the best of my knowledge, this is the first paper that provides non-

asymptotic results for RC-Logit models with high-dimensional covariates. It allows the

number of covariates to increase with the sample size, reflecting the finite-sample-large-

dimension setting, and accounts for the growing number of alternatives, which is crucial

for consistently recovering parameters under endogeneity. Under mild assumptions, I

derive probability bounds for the estimation errors in RMLE. Regardless of the boundary

issue, these bounds indicates a slower convergence rate than the existing high-dimensional

literature due to the increasing number of alternatives.

The second contribution is to supplement the high-dimensional inference literature. I

prove the root-= consistency for the CDML estimator and derive its asymptotic distribu-

tion, where the score function is nonlinear in parameters. Specifically, the distribution is

multivariate Gaussian if the true value of the target parameter is an interior point within

its parameter space, while it is a projection of the multivariate Gaussian onto a polytope

when the true value is on the boundary of its parameter space. Given the orthogonal

structure of the score function, I show that whether the nuisance parameter is on the

parameter space or not does not impact the asymptotic distribution.

The third contribution is thenovel ideaof conducting inferencewhenahigh-dimensional

parameter potentially lie on the boundary. By expanding the squared Euclidean norm

of the Neyman orthogonal score function at the true parameter, it suffices to study the

asymptotic properties of the CDML estimator through a quadratic function, conditioned

on the first-stage estimation. Given the smoothness of the soft-max function in RC-Logit

models, techniques from the literature of boundary inference can be widely applied, as

long as the quality of the first-stage estimation (typically requirement on convergence

rates) is good enough. As a consequence, my framework can be extended to scenarios
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when the true parameter is a sequence converging to the boundary, where a uniformly

valid test becomes necessary.

I illustrate the impacts of high dimensions and parameters on the boundary through

comprehensive Monte Carlo simulations. In these simulations, I design an indirect utility

model that interacts product characteristics with individual characteristics, and estimate

the model by MLE, RMLE and CDML under varying sample sizes, dimensions and

number of products. As expected, these methods perform similarly when the dimension

is small. As the dimension increases, MLE suffers from overfitting with biased estimates

and large variances. RMLE is also biased but with the smallest variances among three

methods. Both MLE and RMLE fail to detect random coefficients when the dimension is

large. In contrast, CDML provides valid confidence intervals, especially in the presence

of boundary issues. Additionally, I compare the own-price and cross-price elasticities

calculated based on the estimates from these methods. When the model includes many

covariates, MLE produces a range of estimated elasticities that is nearly twice as large as

the oracle model, making it less informative. RMLE has a consistent bias towards zero

but the range is much tighter than MLE. CDML offers a more balanced trade-off between

bias and variance.

Furthermore, to discover the impact and possibly degenerate random coefficients in

real-world data, I estimate the demand for soft-drink markets in North Carolina and cal-

culate the own- and cross-price elasticities based on the estimates. In addition to the

consumer panel data and the retailer scanner data provided by NielsonIQ, I incorporate

household-level information from twodetailed surveys that investigate households’ scien-

tific knowledge, shopping preferences and health conditions. My results indicate that the

estimates of both parameters and elasticities are affected by the inclusion of this additional

information. In baselinemodels, all threemethods (MLE, RMLE andCDML) yield similar

estimates, as expected. However, as the number of parameters increases, the estimates

become quite different, emphasizing the importance of careful variable selection and the

6



need for debiasing in high-dimensional settings.

Related literature Numerous literature has explored estimation and inference in the

presence of many parameters (e.g., Breiman and Freedman, 1983; Chamberlain and Im-

bens, 2004; Belloni et al., 2014; Ning and Liu, 2017; Chernozhukov et al., 2018; Cattaneo

et al., 2019). There are four papers to which this paper is closely related. Ning and Liu

(2017) consider an inference framework for ;1-penalized M-estimation based on decorre-

lated score test statistics. Their framework can be applied to SML and SMM, however,

they only verify their high-level assumptions for the objective functions that are quadratic

in parameters, such as generalized linear models. Thus, it is unclear if their assumptions

hold for RC-Logit models. Chernozhukov et al. (2018) introduce the Neyman orthogonal

score function for general likelihood functions and propose double/debiased machine

learning (DML) estimators, which are asymptotically normal. My CDML estimator is an

extension to the DML estimator that allows for parameters on the boundary. Horowitz

and Nesheim (2021) use penalized maximum likelihood estimation with adaptive LASSO

for variable selection and show that their estimator is oracle efficient. Although adaptive

LASSO can select non-zero parameters with probability one, inference after imperfect

variable selection can be misleading (Belloni et al., 2014). Gillen et al. (2019) propose the

BLP-2LASSO method that selects variables for multiple times to mitigate the imperfec-

tion, however, their first-step selection ignores random coefficients and they do not have

a theoretical proof. None of these papers consider parameters on the boundary, which is

a natural concern with random coefficients.

There is a strand of literature that addresses the issue of parameters on the boundary,

especially in the context of random coefficient models. For linear random coefficient mod-

els, Hildreth andHouck (1968) suggest a restricted least squares estimator for the variance

of random coefficients, while Hsiao (1975) recommendsmethods such as generalized least

squares and maximum likelihood estimation. Breusch and Pagan (1979) develop a La-
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grangian multiplier test for random coefficients, building on the work of Aitchison and

Silvey (1958). More recently, Ketz (2018, 2019) formally study the inference when (some

of) the variances of random coefficients are zero or close to zero in RC-Logit models.

However, his results rely on the assumption of fixed dimensions and large sample sizes.

Lesellier et al. (2023) test and relax the distributional assumption on random coefficients.

My inference framework builds upon the techniques developed by Andrews (1999, 2001),

and my QLR test can be extended to achieve uniform validity using the techniques in Fan

and Shi (2023).

Note that RC-Logit models are a special case of generalized linear mixed model

(GLMM) associated with categorical distribution and logit link function. The literature

on GLMMs is extensive, see the review in Tuerlinckx et al. (2006). There are algorithms

for solving GLMMs such as expectation-maximization algorithm (Dempster et al., 1977),

Laplace approximation (Raudenbush et al., 2000), and penalized quasi-likelihood approx-

imation (Breslow and Clayton, 1993). Groll and Tutz (2014) and Schelldorfer et al. (2014)

propose the use of LASSO in GLMMs for variable selection. Hypothesis testing for ran-

dom effects in GLMMs has also been studied, for example, Self and Liang (1987); Stram

and Lee (1994); Verbeke and Molenberghs (2003). However, none of these papers are

tailored to RC-Logit models.

Structure of the paper In Section 2, I briefly review simulated maximum likelihood

estimation and simulated method of moments as traditional approaches, and then in-

troduce regularized maximum likelihood estimation and its properties in the absence of

endogeneity. In Section 3, I adapt the regularized approach for endogenous price in a

BLP-style model. In Section 4, I introduce constrained debiased machine learning estima-

tion and prove its asymptotic properties. In Section 5, I conduct Monte Carlo simulations

to illustrate the effects of high dimensions and parameters on the boundary. In Section 6,

I apply these approaches to estimate the demand in soft-drink markets in North Carolina.
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Finally, in Section 7, I summarize this paper.

Notations I use the following notations in this paper. For a ?-dimensional vector G ∈ R? ,

3G := dim(G) is the dimension of G, ‖G‖1 :=
∑?

9=1 |G 9 | is the ;1-norm, ‖G‖2 :=
√∑?

9=1 G
2
9
is

the Euclidean norm, and ‖G‖∞ := max9=1,...,? |G 9 | is the sup-norm. For a ?-by-@ matrix

� ∈ R?×@ , ‖�‖1 :=
∑?

8=1
∑@

9=1 |�8 9 | and ‖�‖∞ := max8=1,...,? max9=1,...,@ |�8 9 | are induced

by vector norms. ‖�‖� :=
√∑?

8=1
∑@

9=1 |�8 9 |2 is the Frobenius norm. For both vectors

and matrices, the inequalities (i.e., ≤ and ≥) and notations $(·), >(), $%(·) and >%(·) are

element-wise. For a function 5 (G, H), I use �G 5 := %
%G 5 and �2

G 5 := %2

%G%G′ 5 to simplify

notations without ambiguity. For more details about the derivatives, see Section F.1 in

Appendix.

2 High-Dimensional RC-Logit Model

I begin with a brief review of traditional methods for the estimation and inference of

random-coefficient logit models, which serves as a foundation for understanding the

challenges posed by high dimensions and hence motivates the regularized models. Since

the dimension of parameters diverges asymptotically, I establish non-asymptotic proba-

bility bounds for the proposed regularized estimator. Moreover, some algorithms such

as Newton, BFGS and gradient descent may fail due to the non-smooth penalty on pa-

rameters, so I suggest using the proximal gradient descent algorithm instead. For clarity

and intuition, I assume that all data are exogenous in this section, with the discussion on

addressing endogeneity deferred to Section 3.

Suppose that individual 8 = 1, . . . , = makes decisions among an outside alternative

9 = 0 and � inside alternatives 9 = 1, . . . , �. The binary outcome variable .8 9 is equal

to one if individual 8 derives the highest indirect utility *8 9 from alternative 9, where

the indirect utility has a linear specification *8 9 = -′
8 9
Π + &′

8 9
Σ8 + �8 9 . Here -8 9 and &8 9
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are independent and identically distributed (i.i.d.) covariates. The term Σ8 represents

the random coefficient capturing the individual heterogeneity, whose distribution may

be either modeled parametrically or estimated non-parametrically. For the purpose of

this paper, I assume that Σ8 = Σ � �8 where Σ is a vector of standard deviations and the

taste �8 ∼ 8.8.3. #(0, �3& ) with dimension 3& is unobservable to researchers. A nature

restriction on Σ = (Σ1, . . . ,Σ3& )′ is that its components Σ1, . . . ,Σ3& are non-negative.

When the idiosyncratic errors �8 9’s follow a Type I extreme value distribution (also known

as the Gumbel distribution), the individual choice probability, integrated over �8 , is given

by

B8 9 := %A
(
.8 9 = 1 | -8 , &8 ;Π,Σ

)
=

∫ exp(-′
8 9
Π + (&8 9 � �8)′Σ)

1 +∑�

:=1 exp(-′
8:
Π + (&8: � �8)′Σ)

)(�8)3�8 (2.1)

where )(·) is the probability density function of #(0, �3& ), and *80 = 0 is normalized for

identification purposes.

In this section, the objective is to estimate the parameter � := (Π′,Σ′)′ ∈ Θ ⊂

R3- × [0,∞)3& when Π is high-dimensional but sparse. Since the dimension 3- may

increase with the sample size =, it is appropriate to assume a triangular array of data

(.8 9 ,= , -8 9 ,= , &8 9 ,=) ∼ P= with the parameter Π= . To ease notation, I omit the subscript =

unless necessary for clarity or when it could lead to ambiguity. Inference for �, which

may lie on the boundary of the parameter space Θ, will be addressed in Section 4.

2.1 Simulated Maximum Likelihood and Method of Moments

When the model is correctly specified, the maximum likelihood estimator (MLE) is

asymptotically normal and efficient under mild conditions, for example, the true pa-

rameter �0 is an interior point in a compact parameter space Θ (Newey and McFadden,

1994). For the RC-Logit model, the log-likelihood function is expressed as !=�(�) :=∑=
8=1

∑�

9=0.8 9 log B8 9(�). Although the integral in B8 9(�) does not have a closed-form solu-
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tion, it can be numerically approximated usingMonte Carlo integration or Gauss-Hermite

quadrature (see Appendix D). Let B̂8 9�(�) := �−1 ∑�
1=1 B8 9(�, �81) denote the approximation

of B8 9(�)using�drawnnodes �′
81
B. Plugging in B̂8 9�’s, the simulated log-likelihood function

is defined as !=��(�) :=
∑=
8=1

∑�

9=0.8 9 log B̂8 9�(�), and the simulated maximum likelihood

(SML) estimator �̂("! := arg max�∈Θ !=��(�) is obtained by maximizing the function. It

is important to note that E�[log B̂8 9�(�)] ≠ log B8 9(�) even if E�[B̂8 9�(�)] = B8 9(�), suggesting

sufficient draws are required to mitigate the approximation error log B̂8 9�(�) − log B8 9(�).

As is shown in Train (2002, pp.255), when the dimension 3� is fixed, it suffices to

have � → ∞ to achieve consistency, and �=−1/2 → ∞ to asymptotically ignore the

approximation error as well as achieve the same limiting distribution as in the MLE.

Namely,
√
=(�̂("! − �0) →3 #(0, (−E[�=�(�0)])−1) as = → ∞, where the hessian matrix

E[�=�(�0)] := E[ 32

3�3�′!=�(�)]|�=�0 should be negative definite.

Instead of using the MLE score function 3
3�′!=�(�) as the instrument variables /8 9 , the

simulatedmethodofmoments (SMM)estimator �̂("" ∈ Θ is the solution to =−1 ∑=
8=1

∑�

9=0(.8 9−

B̂8 9�(�))/8 9 = 0 (Train, 2002, pp.276). It sacrifices efficiency but only requires � → ∞ be-

cause the choice probability B8 9(�) enters linearly. It can be shown that, by the central limit

theorem,

√
=(�̂(""−�0) →3

©­«E

�∑
9=1

3

3�
B8 9(�0)/8 9

ª®¬
−1

#
©­«0, +0A


�∑
9=1
(.8 9 − B8 9(�0))/8 9

ª®¬ , =, �→∞

and the asymptotic variance is different from (−E[�=�(�0)])−1 without ideal instruments.

When the dimension 3� = 3- + 3& is comparable to or greater than the sample size =,

there are four concerns on the estimators �̂("! and �̂("" . First, both estimators may be

biased under finite sample sizes, even if 3� < = is fixed. Traditional proofs relying on the

lawof large numbers or the central limit theorem require either 3� < = is fixed or 3� = >(=).

Second, the sample analogs used to construct test statistics or confidence intervals, such

as 32

3�3�′!=�(�̂("!) and 3
3�′=

−1 ∑
8

∑
9 B8 9(�̂("")/8 9 , may be ill-conditioned. Moreover, they
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may not be consistently estimated given the bias from the estimators. Third, bothmethods

are prone to overfitting when the dimension 3- is large, potentially masking the presence

of the random coefficients with zero estimates of �A , while the predicted market shares

may still match the data very well. Finally, in practice the data covariates -8 9 and &8 9 may

exhibit multi-collinearity that can inflate variances, especially when dealing with dummy

variables.

2.2 Regularized Maximum Likelihood Estimation

A natural solution to addressing high-dimensionality and overfitting is to perform vari-

able selection according to their importance, by adding a penalty term into the objective

function. Given that the number of drawn nodes � is selected by researchers, I simplify

the analysis by assuming that B8 9(�) is known (or can be approximated arbitrarily well)

for all � ∈ Θ. The simplification eliminates the need to account for the approximation

errors and allows us to focus on the regularization without loss of generality. I suggest

the regularized maximum likelihood estimator (RMLE) as follows:

�̂'"!� := arg min
�∈Θ

−!=�(�) + %�= (�) (2.2)

where %�= (�) ≥ 0 is a known penalty function with a pre-determined tuning parameter

�= > 0. The literaturehas intensively studiedvariouspenalties and criteria for selecting the

tuning parameter. For instance, in ridge regression (Hoerl and Kennard, 1970) the penalty

is %�= = �= ‖�‖22 = �=
∑3�
3=1 �

2
3
, and in the least absolute shrinkage and selection operator

(LASSO, Tibshirani, 1996), it is %�= = �= ‖�‖1 = �=
∑3�
3=1 |�3 |. The tuning parameter �= can

be chosen using information criteria or  -fold cross-validations (see Appendix C. There

are many variants of LASSOs designed for different contexts. For example, the adaptive

LASSO (Zou, 2006; Horowitz andNesheim, 2021), the generalized LASSO (Tibshirani and

Taylor, 2011) and the (sparse) group LASSO (Yuan and Lin, 2006; Meier et al., 2008; Babii
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et al., 2022).

In this paper, I focus on the LASSO and let %�= (�) = �= ‖�‖1, which has demonstrated

its strength in consistent estimation (e.g., Bickel et al., 2009) and variable selection (e.g.,

?). Note that �̂'"!� in Eq.(2.2) is a regularized M-estimator (Negahban et al., 2012).

The other decomposable regularizers such as the weighted LASSO and the group LASSO

should also work effectively. Consistent with much of the LASSO literature, I allow the

dimension 3� → ∞ sub-exponentially fast as = → ∞, but need to assume that the true

parameters are sparse. Specifically, let (= := {3 = 1, . . . , 3� | �0,3 ≠ 0}, and its cardinality

s= := |(= | is known as the exact sparsity of �0. I assume that s= is much smaller than =. The

following Assumption 1-3 suffice to derive an probability bound on ‖�̂'"!� − �0‖1 and

‖�̂'"!� − �0‖2.

Assumption 1 (Score Condition). Assume that the true parameter �0 = (Π′0,Σ′0)′ ∈ Θ ⊂

R3- × [0,∞)3& is the unique maximizer of E
[∑�

9=1.8 9 log B8 9(�0)
]
such that 3

3�E[!=�(�0)] =

E
[
3
3�

∑�

9=1.8 9 log B8 9(�0)
]
= 0.

Assumption 1 posits the interchangeability of the derivative 3
3� and the expectationE[·]

over the data. Additionally, it assumes that the true parameter �0 ∈ Θ can be identified

through the population score function. These conditions are standard and mild in the

context of RC-Logit models. Importantly, the assumption does not exclude the possibility

that some true parameters may lie on the boundary of Θ.

Assumption 2 (Local Convexity). Suppose that −!=�(�) is locally convex in a neighborhood of

�0 ∈ Θ. In addition, with probability at least 1 − 0= for some constants 0= → 0, the first-order

approximation error

−!=�(�0 + Δ) + !=�(�0) +
(
3

3�
!=�(�0)

)′
Δ ≥ =�!‖Δ‖22 for all Δ ∈ C

where C := {Δ ∈ R3� | ∑9∈(2= |Δ9 | ≤ 3
∑
9∈(= |Δ9 |} is a convex cone and �! > 0 is a universal

constant.
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Assumption 2, known as the restricted strong convexity condition, assumes sufficient

curvature in the neighborhood of �0, particularly in the convex cone C where the lasso

estimation error resides (Lemma 1 in Negahban et al., 2012). Intuitively, a larger curvature

�! implies a steeper gradient around �0, and the estimation error should decrease in �!.

It can be regarded as the non-linear version of the restricted eigenvalue condition in the

LASSO literature (Bickel et al., 2009). In general, −!=�(�) is neither globally concave nor

convex due to the integral and the soft-max function. In fact, it can be even completely

flat in certain directions at �0 ∈ Θ when 3� > = (Figure 3 in Negahban et al., 2012). Since

the neighborhood is unknown, in practice, researchers often try multiple starting points

or restrict the parameter space to ensure the numerical convergence of algorithms.

Assumption 3 (Bounded Data and Shares). The data covariates .8 = (.80, . . . , .8�)′, -8 =

(-′
81, . . . , -

′
8�
)′ and&8 = (&′81, . . . , &

′
8�
)′ are i.i.d. random vectors across 8 = 1, . . . , =. In addition,

assume that -8 ∈ [−�30C0 , �30C0]3- , &8 ∈ [−�30C0 , �30C0]3& and min9=0,...,� B8 9(�0) ≥ �B �−1 > 0

for some finite and universal constants �30C0 , �B > 0.

To derive the probability bounds for �̂'"!�−�0, another sufficient condition is that the

scorevector concentrates in the sup-normwithhighprobability, formally, ‖=−1 3
3�!=�(�0)‖∞ ≤

�= with probability approaching one. Notice that 3
3� log B8 9(�0) = B−1

8 9
(�0) 33� B8 9(�0), and the

choice probability B8 9(�0) can be arbitrarily close to zero if the number of alternatives � is

large enough, suggesting that the derivative is unbounded. When there is no endogeneity,

a small-�-and-large-= setting may suffice as �0 can be directly4 estimated. However, in the

presence of endogeneity, a large � is necessary as will be shown in Section 3. By Lemma

1, Assumption 3 is a sufficient condition to derive the rate �= . I assume that all choice

probabilities converge to zero at the same rate $(�−1) as � →∞ (cf., Berry et al., 2004b).

4What I meant directly here is that we can estimate �0 simultaneously through MLE without using
contraction mapping or IV regressions.
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Lemma 1. Given Assumption 1, for any 2 > 4�−1
B �30C0 ,



 1

=

3

3�
!=�(�0)






∞
≤ 2�=

with probability greater than1−1= = 1−2 exp
(
(1 − 22�2

B

8�2
30C0

) log 3�
)
, and the rate�= = �

√
=−1 log 3�.

This implies ‖=−1 3
3�!=�(�0)‖∞ = $%(�

√
=−1 log 3�).

The proof of Lemma 1 is derived by leveraging the bound ‖ 3
3� B8 9(�0)‖∞ ≤ 2�30C0 and

then applying the McDiarmid’s inequality. However, since both �30C0 and �−1
B can be

large, the sup-norm of the score vector may also become large unless the sample size =

is sufficiently large. The following Theorem 1 shows that the rate �= = �
√
=−1 log 3� also

serves as the rate for the estimation errors.

Theorem 1 (;1/;2-Error Bounds). Suppose that Assumption 1-3 hold. If �= ≥ 2=�= , then with

probability at least 1 − 0= − 1= ,

‖�̂'"!� − �0‖2 ≤
3
√

s=�=
=�!

and ‖�̂'"!� − �0‖1 ≤
12s=�=
=�!

where s= is the number of non-zero elements in the vector �0.

The proof of Theorem 1 refers to the Corollary 1 in Negahban et al. (2012) but adapts

to a random design. When the number of alternatives � = $(1) is stochastically bounded,

the rate �
√

s==−1 log 3� from Lemma 1 aligns with the common rate
√

s==−1 log 3� for

linear models in the LASSO literature. The rate suggests that the dimension 3� can

grow at most sub-exponentially with the sample size, i.e., $(exp(=A)) for some constant

A ∈ (0, 1). When � → ∞, the rate slows down due to the diverging term B−1
8 9
(�0) = $(�)

in the score vector. Although the probability bounds in the theorem are not tight, the

regularized estimator �̂'"!� is expected to have a non-parametric rate of convergence

when the dimension 3� →∞ is too high or the number of alternatives � →∞ is too large.
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As a consequence, inference based on
√
=(�̂'"!� − �0) can be improper without further

adjustments (Armstrong et al., 2023).

2.3 Algorithm

Because of the integration over the random coefficients, the RC-Logit models are intensive

and unstable in computation, which limits their application to a small number of covari-

ates. Although the integral in Eq.(2.1) has no closed-form solution, its approximation has

been developed in the literature, trading off accuracy and computational efficiency. For

instance, researchers can approximate the integral using Laplace approximation, Gauss-

Hermite quadrature, or quasi Monte Carlo integration with low-discrepancy sequences.

Specifically, the Gauss-Hermite quadrature is precise and efficient in computation, yet it

suffers from the curse of dimensionality of the random coefficients. Conversely, theMonte

Carlo integration is widely implemented when there are many potentially related random

coefficients, but it requires more simulation draws to achieve sufficient accuracy. Table

D.1 summarizes these methods, and a more detailed review can be found in Tuerlinckx

et al. (2006) and Conlon and Gortmaker (2020).

Orthogonal to the numerical integration, another challenge arises from the non-

differentiability of the ;1-penalty %�= (�) =
∑3�
3=1 �= |�3 | at the origin. That is, %|� |/%� = 1

if G > 0 and = −1 if G < 0, but it is undefined at G = 0. This is fine when the true value

�0 is strictly away from 0. However, such non-zero assumption contradicts the sparsity

condition in high-dimensional settings and fails when the variances lie on the boundary.

In my numerical experiments, popular algorithms such as BFGS and (conjugate) gradient

descent still tend to converge when the dimension 3� is small. Nevertheless, their min-

imizers often contain tiny non-zeros (≤ 10−4) instead of exact zeros. When 3� is large,

most algorithms are prone to get trapped in local minima, stopping too early or oscillating

between points.

In Algorithm 1, I propose the proximal gradient descent method to solve �̂'"!� ∈ Θ
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withbox constraintsΘ = ⊗3�
3=1[�

;1
3
, �D1

3
]andnumerical integration B̂8 9�(�) = �−1 ∑�

1=1 B8 9(�, �81).

Algorithm 1 Proximal Gradient Descent Algorithm for RC-Logit

1. Choose an initial �(0) = (�(0)1 , . . . , �(0)
3�
)′ ∈ Θ, an initial step-size Cinit > 0, a shrinking

rate � ∈ (0, 1), and a penalty �= ≥ 0;

2. For ℎ = 1, 2, . . . , start with C = Cinit

(a) Calculate the proximal mapping �(ℎ) := %A>G1>G(�(ℎ−1),�= , C), where the 3-th
coordinate is defined as

[
%A>G1>G(�,�= , C)

]
3

:=



�D1
3

if !(�, 3, C) ∈ [�:
D1
,∞)

!(�, 3, C) − C�= if !(�, 3, C) ∈ [C�= , �:D1)
0 if !(�, 3, C) ∈ [−C�= , C�=)
!(�, 3, C) + C�= if !(�, 3, C) ∈ [�;1

3
,−C�=)

�;1
3

otherwise

(2.3)

and !(�, 3, C) := �3 + C %
%�3
!=��(�);

(b) Verify the criterion of line search

−!=��
(
�(ℎ)

)
≤ −!=��

(
�(ℎ−1)

)
− 3

3�
!=��(�(ℎ−1))(�(ℎ) − �(ℎ−1))

+ 1
2C ‖�

(ℎ) − �(ℎ−1)‖2
(2.4)

(c) If (b) fails, shrink C ← �C and go back to (a);

3. Repeat Step 2 until convergence, and �̂'"!� is the final �(ℎ).

Since the unpenalized objective function !=��(�) is smooth, by the Taylor’s expansion,

!=��(�) ≈ !=��(�0) +
3

3�
!=��(�0)(� − �0) −

1
2C ‖� − �0‖22 (2.5)

for some C ≥ 0. Some algebra shows that �̂'"!� can be approximated5 by the solution

5For some smooth function 6(�), let � be its gradient at �0. The second-order Taylor’s expansion at �0 is
6(�0) + �′(� − �0) + 1

2C (� − �0)′(� − �0) by assuming the hessian is 1
C �. Clearly, the first term is a constant.

Now we expand 1
2C ‖�0 − C� − �‖2, which is �′(� − �0) + 1

2C (� − �0)′(� − �0) + C
2�
′�, and the last term is also

a constant.
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to min�∈Θ
1
2C ‖�0 + C 33�!=��(�0) − �‖22 + �= ‖�‖1, whose sub-gradient optimality condition

implies the proximal mapping %A>G1>G(�0,�= , C) in Eq.(2.3). As a type of soft-thresholding

operators, the proximal mapping truncates large values and forces smaller ones to be

zero, depending on the penalty size �= , the step size C, and the imposed box constraints.

While the gradient − 3
3�!=��(�) indicates the direction of the steepest descent, selecting an

improper C can still lead to slow convergence or even divergence. In the algorithm, C is

chosen as the largest C∗ such that−!=��(·)decreases after the update �← %A>G1>G(�,�= , C),

through a procedure known as backtracking line search. Lemma 2 shows that Algorithm 1

can achieve a convergence rate of$(ℎ−1), which is typical for gradient descent algorithms.

Lemma 2. Let {�(ℎ) : ℎ = 0, 1, . . . } be a sequence of updates in Algorithm 1 such that !=��(·) is

concave at �(ℎ), and �∗ be the unique minimum of −!=��(�) + �= ‖�‖1. Then,

!=��(�(ℎ)) + �= ‖�(ℎ)‖1 − !=��(�∗) − �= ‖�∗‖1 ≤
�
√
= log 3�‖�(0) − �∗‖22

�ℎ

where the right-hand side goes to zero as ℎ →∞.

The proof of Lemma 2 follows a standard approach by verifying the Lipschitz condition

for the sup-norm ‖ 3
3�!=��(�)‖∞ for every � ∈ Θ and finite =. The result is intuitive: the

optimization becomes more challenging as the number of parameters increases and the

approximation in Eq.(2.5) is worsen. The concavity assumption can be relaxed, for exam-

ple, using the techniques in Li and Lin (2015). As with many ;1-regularized problems, the

algorithm can be improved using accelerated proximal gradient (e.g., Beck and Teboulle,

2009) and/or (block) coordinate descent techniques (e.g., Friedman et al., 2007; Beck and

Tetruashvili, 2013), achieving faster convergence rates or having excellent performance in

practice (e.g., glmnet package in R). However, we do not apply these methods here for

two reasons. First, compared to the accelerated methods, the proximal gradient descent is

more stable with simulation errors and performs adequately inmy context. Second, while

the gradient has an explicit form, it is still costly to calculate, especially it must be updated
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for each coordinate in coordinate gradient descent methods. Similarly, I do not consider

proximal newton methods. The complexity of calculating a full gradient vector and a

full hessian matrix is $(3�=�2() and $(32
�=�

3(), respectively. In practice, it is strongly

recommended to provide the algorithm solver with the analytical gradient (and hessian),

which can be found in Appendix F.1.

Finally, it is worth noting that the RC-Logit model in Eq.(2.1) can be viewed as a

special case of generalized linear mixed models (GLMMs) with categorical outcomes

and Gaussian random coefficients. In addition to the aforementioned techniques, the

penalized6 quasi-likelihoodmethod (PQL, Breslow and Clayton, 1993) is computationally

efficient and widely implemented in GLMMs. This method takes advantages of the

concavity of the log-likelihood function in the exponential family. As high-dimensional

extensions of PQL, Groll and Tutz (2014) and Schelldorfer et al. (2014) suggest using

LASSO to select variables. However, PQL relies on the Laplace approximation and has

been found to be biased when the variance is large or the mean is small (Bolker et al.,

2009). It is still unclear whether PQL can approximate the soft-max function nicely, which

I leave for future research.

3 Modeling Endogeneity

In this section, I consider a specification of RC-Logit model which is of interest in the

literature of industrial organizations. Extending the single-market model in Section 2, I

now assume that there are C = 1, . . . , ) markets. In each market C, the individual 8 ∈ ℐC
6It is called “penalized” because there is a quadratic term 1′�−11 of the random coefficients 1 (but not the

variance covariance matrix �) in the approximated likelihood function, which solves 1 as an intermediate
parameter and then estimate its variance.
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chooses the alternative 9 ∈ JC if the indirect utility*8 9C > *8:C for : ∈ JC , where

*8 9C = � 9C + �8 9C + �8 9C , �8 9C ∼ 8.8.3. Type I EV

� 9C = �̄ + -′9C�
G + %9C
 + �9C

�8 9C = (-9C ⊗ !8)′Π + (-9C � �8)′Σ, �8 ∼ 8.8.3. #(0, �3& )

The term � 9C represents the choice-specific utility from alternative 9 in market C, which

is a linear function of observable characteristics -9C , price %9C and unobserved quality �9C

(i.e., unobservable to researchers). I assume that -9C is independent of �9C while %9C and

�9C are correlated. The term �8 9C captures the individual-level utility, which depends on

observable individual characteristics !8 and unobservable individual tastes �8 . For the

identification purpose, let �0C and �80C be equal to zero so *80C = �80C . The individual

choice probability can be derived as

B8 9C(�C ,Π,Σ) := %A
(
.8 9C = 1 | -C , !8 ; �C ,Π,Σ

)
=

∫ exp
(
� 9C + (-9C ⊗ !8)′Π + (-9C � �8)′Σ

)
1 +∑

:∈JC exp (�:C + (-:C ⊗ !8)′Π + (-:C � �8)′Σ)
)(�8)3�8

where �C = (�1C , . . . , ��C C)′ and -C = (-′1C , . . . , -′�C C)
′.

Thegoal is to consistently estimate� := (�̄, �G′ , 
;Π′,Σ′)′, whereΠ is ahigh-dimensional

parameter. As is discussed in Section 2, the challenges associated with high-dimensional

Π apply here as well, such as the difficulty in detecting Σ due to overfitting. To illus-

trate this, first consider an experimental setting that -9C and %9C are freely manipulated

by the researcher, and there is no endogeneity �9C = 0. In this case, the identification of


 is straightforward: the researcher can vary the price and compare the market shares

before and after the change. �G can be similarly identified since -9C is common to all

individuals in market C, while the identifying power is impaired by the high dimensions.

Ideally, Π can be identified by comparing the decisions made by different groups of in-

dividuals (grouped by their demographics !8) when they face varying characteristics -9C .
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The standard deviation Σ can be identified if the researcher can observe different choices

made by individuals with the same demographics !8 . But when the dimension of !8 is

large and the number of individuals =C is relatively small, it becomes difficult to group

individuals with similar !′
8
B. When there exists endogeneity such that �9C ≠ 0, %9C and �9C

change together so 
 is not identifiable without instrument variables. However, � 9C can

be uniquely determined by matching the market shares and the predicted shares for any

given (Π′,Σ′)′ according to BLP1995. In this case, the overfitting inΠ andΣmay introduce

bias in recovering � 9C , and hence bias in estimating �̄, �G and 
.

When individual-level data are available, the � 9C ’s can be estimated as parameters

using SML or SMM (Goolsbee and Petrin, 2004; Train and Winston, 2007), such that the

predicted market share B̂ 9C = |ℐC |−1 ∑
8∈ℐC B8 9C(�̂, Π̂, Σ̂) matches the observed market share

B30C0
9C

for each alternative 9 and market C. If the total number of products � :=
∑)
C=1 |JC |

across ) markets is small relatively to the total number of individuals # :=
∑)
C=1 |ℐC |, that

is, � = >(#), then we can simultaneously estimate �, Π and Σ using RMLE as follows:

(�̂'"!� , Π̂'"!� , Σ̂'"!�) := arg min
Σ≥0,Π,�

−!#�)(�) + %�= (�)

= arg min
Σ≥0,Π,�

−
)∑
C=1

∑
8∈ℐC

∑
9∈JC

.8 9C log B8 9C(�·C ,Π,Σ) + �= ‖(Π′,Σ′)′‖1

(3.1)

Note that the parameter � is not penalized because it is generally non-sparse. The prop-

erties of RMLE have been discussed in the previous section. The following Assumption 4

and 5 are adapted from Assumption 1-3 to account for multiple markets.

Assumption 4. Suppose that �0 = (�′0,Π′0,Σ′0)′ ∈ R3� is a unique maximizer of E
[
!#�)(�0)

]
=

E
[∑)

C=1
∑
8∈ℐC

∑
9∈JC .8 9C log B8 9C(�0)

]
and the score condition

3

3�
E

[
!#�)(�0)

]
= E


)∑
C=1

∑
8∈ℐC

∑
9∈JC

.8 9CB
−1
8 9C (�0)

3

3�
B8 9C(�0)

 = 0
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holds. In addition, for every market C = 1, . . . , ),

1. the random vectors !8 ∈ [−�30C0 , �30C0]3! and -9C ∈ [−�30C0 , �30C0]3- have bounded

support for all 8 ∈ ℐC and 9 ∈ JC ;

2. !8’s are i.i.d. across 8 ∈ ∪CℐC ;

3. let �C := |JC | and min9∈JC B8 9C(�0) ≥ �B �−1
C > 0 for a universal constant �B ∈ (0, 1)

Assumption 5. Suppose that −!#�)(�) is locally convex in a neighborhood of �0 ∈ Θ. In

addition, with probability at least 1 − 0′= , the first-order approximation error

−!#�)(�0 + Δ) + !#�)(�0) +
(
3

3�
!#�)(�0)

)′
Δ ≥ #�!‖Δ‖22 for all Δ ∈ C

where # =
∑)
C=1 |ℐC | is the total number of individuals, C := {Δ ∈ R3� | ∑

9∈(2= |Δ9 | ≤

3
∑
9∈(= |Δ9 |} is a convex cone and �! > 0 is a universal constant.

Having multiple markets can increase variation in the characteristics -9C and the price %9C ,

whichaids the estimationof (�̄, �G′ , 
)′. Moreover, the sup-normof the score ‖ 3
3�!#�)(�0)‖∞

is of theordermaxC=1,...) max9∈JC B−1
8 9C
(�0) = $(maxC �C) rather than$(

∑
C �C). These two rates

are equivalent when) < ∞ is fixed (i.e., a few largemarkets, eachwithmany alternatives),

but the former is smaller when � < ∞ is fixed (i.e., many small markets, each with a few

alternatives). As a corollary of Lemma 1 and Theorem 1, Corollary 1 derives the rate of

the sup-norm as well as the ;1- and ;2-norm of the estimation error.

Corollary 1. Suppose that Assumption 4 holds. Then, for any 2 > 4�−1
B �

2
30C0

, with probability

greater than 1 − 1′= = 1 − 2 exp
(
(1 − 22�2

B

8�4
30C0

) log 3�
)
,





 1
#

3

3�
!#�)(�0)






∞
≤ 2�#
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where�# = maxC �C
√
#−1 log 3�. This implies ‖#−1 3

3�!#�)(�0)‖∞ = $%(maxC �C
√
#−1 log 3�).

In addition, given Assumption 5 and choose �# ≥ 2#�# , then

‖�̂'"!� − �0‖2 ≤
3
√

s#�#
#�!

and ‖�̂'"!� − �0‖1 ≤
12s#�#
#�!

with probability at least 1 − 0′= − 1′= , where s# is the number of non-zero elements in �0.

To illustrate the benefit of having multiple markets, consider the scenario that the

dimension is low (i.e., s# = 3� = $(1)) and the markets are similar (i.e., �C = $(�) for every

C). In this scenario, the ;2-norm is shrinking when �C = >(#1/2) by Corollary 1, which is a

weaker condition compared to �C = >()−1#1/2) by Theorem 1.

Algorithm 1 can be applied to Eq.(3.1) without extra costs. Notably, dividing a huge

market with# = =) individuals and � = 9) alternatives into) smaller markets with |ℐC | =

= and |JC | = 9 can significantly reduce computational complexity. In this configuration,

the complexity of calculating the gradient vector 3
3�!#�)(�) decreases from $()33�=9

2) to

$()3�=92), and the complexity of calculating the hessian matrix 32

3�3�′!#�)(�) decreases

from $()432
�=�

3) to $()32
�=9

3).

The contraction mapping in BLP1995 can also assist in estimating �̂'"!�, but it comes

with additional costs. Their paper demonstrates that, for any pair of parameters Π

and Σ, the parameter � 9C = � 9C(Π,Σ) can be obtained by solving the equation B30C0
9C

=

B 9C(�(Π,Σ),Π,Σ) with an implicit function �(·). Their proof holds as long as Π and Σ are

finite-dimensional, even if the dimensions are growing. As a result, another version of

RMLE is given by

(Π̂'"!� , Σ̂'"!�) = arg min
Σ≥0,Π

−
)∑
C=1

∑
8∈ℐC

∑
9∈JC

.8 9C log B8 9C(�·C(Π,Σ),Π,Σ) + �= ‖(Π′,Σ′)′‖1

(3.2)

where � 9C = � 9C(Π,Σ) is solved via contraction mapping. Compared with Eq.(3.1), the
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sparsity assumption on �#! := (Π′,Σ′)′ (known as the nonlinear parameters) is more

plausible since � is not treated as a parameter. However, since � is a function of Π and

Σ, the gradient 3
3�#!

B8 9C(�·C(�#!), �#!) = 3
3�#!

B8 9C(�·C , �#!) + 3
3�·C

B8 9C(�·C , �#!) 3
3�#!

�·C(�#!)

needs to be computed by the chain rule. This requires additionally solving the derivative
3

3�#!
�·C(�#!) by the implicit function theorem:

3

3�#!
�·C = −

(
3

3�·C
B 9C(�·C , �#!)

)−1
3

3�#!
B 9C(�·C , �#!)

whichbrings extra complexity toboth theproof and the computation. Since the contraction

mapping requires high precision and the numerical gradient of B8 9C(�#!) is not feasible

when �#! is high-dimensional, it is unclear whether solving Eq.(3.2) is more efficient than

solving Eq.(3.1).

Once the choice-specific utilities � 9C ’s are estimated by �̂ 9C ’s, the parameters (�̄, �G′ , 
)′

can be identified using instrument variables / = (/ 9C)9∈JC ,C=1,...,) such that E[�9C | / 9C] =

0 (Train, 2009). The literature has extensively studied the choice and construction of

instrument variables as well as the efficient estimation of parameters (see discussions in

Nevo, 2000b; Conlon and Gortmaker, 2020). For instance, the two-stage least squares

(2SLS) estimator is given by

( ˆ̄�, �̂G′ , 
̂)′ := ©­«
)∑
C=1

∑
9∈JC

/ 9C(1, -′9C , %9C)
ª®¬
−1

)∑
C=1

∑
9∈JC

/ 9C �̂ 9C (3.3)

where the number of instrument variables is equal to 2 + 3- . Eq.(3.3) offers insights into

how the bias �̂ − � := (�̂ 9C − � 9C)9∈JC ,C=1,...,) affects the estimation. Since � 9C = �̄ + -′
9C
�G +
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%9C
 + �9C , then

©­­­­­«
ˆ̄�

�̂G


̂

ª®®®®®¬
−

©­­­­­«
�̄

�G




ª®®®®®¬
=

©­«
)∑
C=1

∑
9∈JC

/ 9C(1, -′9C , %9C)
ª®¬
−1 ©­«

)∑
C=1

∑
9∈JC

/ 9C�9C
ª®¬

+ ©­«
)∑
C=1

∑
9∈JC

/ 9C(1, -′9C , %9C)
ª®¬
−1 ©­«

)∑
C=1

∑
9∈JC

/ 9C(�̂ 9C − � 9C)ª®¬
, (3.4)

suggesting that the 2SLS estimators are
√
�-consistent if �−1/2/(�̂ − �) = >%(1).

A key interest in the literature is the estimation of own- and cross-price elasticities,

which are defined as below:

%B 9C

%?:C

?:C

B 9C
=


? 9C

B 9C

∫

B8 9C(1 − B8 9C) 5�(�8·C | Π,Σ)3�8·C if 9 = :

−
?:C

B:C

∫

B8:CB8 9C 5�(�8·C | Π,Σ)3�8·C otherwise

Given the individual-level data (with equal weights in my setting) and the estimated

parameters, the elasticities given a price ?:C can be approximated by the sample average

over individuals:

%B 9C(�̂)
%?:C

?:C

B 9C(�̂)
≈


? 9C∑

8∈ℐC
∫
B̃8 9C)(�8)3�8

∑
8∈ℐC

∫

 B̃8 9C

(
1 − B̃8 9C

)
)(�8)3�8 if 9 = :

−
?:C∑

8∈ℐC
∫
B̃8:C)(�8)3�8

∑
8∈ℐC

∫

 B̃8:C B̃8 9C)(�8)3�8 otherwise

(3.5)

where B̃8 9C =
exp

(
�̂ 9C+(-9C⊗!8)′Π̂+(-9C��8)′Σ̂

)
1+∑:∈JC exp

(
�̂:C+(-:C⊗!8)′Π̂+(-:C��8)′Σ̂

) is thepredicted individual choiceprobability

conditioning on the taste �8 .
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4 Constrained Debiased Machine Learning

Recall that in Section 2 and 3, I discuss the challenges in estimating�when theparameterΠ

is high-dimensional, and prove the consistency of my regularized estimator �̂'"!� under

mild assumptions. In this section, I partition the parameter � := (�′, �′
#
)′ ∈ Θ into a low-

dimensional vector � ∈ Γ, which represents the target parameter, and a high-dimensional7

vector �# ∈ N# , which represents the nuisance parameter. I assume that the parameter

space Θ can be decomposed as Γ × N# , where Γ and N# are compact sets for any finite

sample size # . Then, I conduct inference for the target parameter � by constructing a
√
#-

consistent estimator �̂, allowing both � ∈ Γ and �# ∈ N# to potentially lie on the boundary

of their parameter spaces. As an example, let � := (Π1,Σ
′)′ consist of the first element

of Π (e.g., the effect of income) and the whole Σ (e.g., the heterogeneity on soft-drink

flavors). In this case, Γ := [−�, �] × [0, �)3Σ for some large number � > 0. Theoretically,

my results also apply to the case � := (�′,Π1,Σ
′)′ ∈ Γ := [−�, �]3�+1 × [0, �)3Σ , when � is

low-dimensional.

The idea is to construct a Neyman orthogonal score function based on the score func-

tion of the MLE, which can partial out the first-order bias in the estimation of nuisance

parameters (Ning and Liu, 2017; Chernozhukov et al., 2018; Kennedy, 2023). Li (2024) pro-

poses a framework called constrained debiasedmachine learning (CDML), which extends

the debiased machine learning (Chernozhukov et al., 2018) to allow for constraints on

parameters. Let !#�(�, �# ) :=
∑#
8=1

∑�

9=0.8 9 log B8 9(�, �# ) denote the log-likelihood func-

tion where B8 9(�, �# ) is the choice probability integrated over �8 . The generalization to

multiple markets is straightforward so ) = 1 is assumed for simplicity. Then, the Neyman

orthogonal score function for !#�(�, �# ) is given by

"#�(�;�# , �# ) := 1
#

%

%�
!#�(�, �# ) −

1
#
�#

%

%�#
!#�(�;�# ) (4.1)

7Although � is also high-dimensional, I only add subscript # to � (and � later) to highlight their
dimensions are growing as # →∞.
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where �# is a 3�-by-3�# de-correlation matrix that will be introduced later. The score

condition of MLE E[ 3
3�!#�(�0, �#,0)] = 0, for example, in Assumptions 1 or 4, implies

E["#�(�0;�#,0, �)] = 0 for any �. Thus, a naive DML estimator �̂�"!, conditioning on

the first-stage machine learning (e.g., LASSO) estimators �̂# and �̂# , can be defined as the

solution to "#�(�; �̂# , �̂# ) = 0. It is ideal if �̂# ≈ �#,0 and �̂# ≈ �#,0, but the estimator

tend to overfit the noise due to over-parameterization, which may cause additional bias.

To mitigate the risk of overfitting in �̂# and �̂# , it is recommended8 to implement the

technique known as  -fold cross-fitting from the machine learning literature. Formally, the

procedure is introduced as below.

For somenatural number ∈ N, consider a partition I1, . . . , I of the indices {1, . . . , #}

and define I−: := {1, . . . , #}\I: . For simplicity, assume that the size of I1, . . . , I are equal

to b#/ c. Let !(:)
#�
(�) :=

∑
8∈I:

∑�

9=0.8 9 log B8 9(�, �# ) denote the testing-data log-likelihood

associated with the individuals indexed by I: and !(−:)#�
(�) :=

∑
8∈I−:

∑�

9=0.8 9 log B8 9(�, �# )

denote the training-data log-likelihood from individuals indexed by I−: . Then, for each

: = 1, . . . ,  :

1. Solve the first-stage regularized estimator �̂'"!�
:

based on the training data

�̂'"!�
:

= (�̂'"!�
:

, �̂'"!�
#,:

) := arg min
�∈Θ

!
(−:)
#�
(�) +  − 1

 
�# ‖�‖1

2. Solve the 3�-by-3�# de-correlation matrix �̂'"!�
#,:

as a dantzig selector (Candes and

Tao, 2007)

�̂'"!�
#,:

= arg min ‖�: ‖1 such that ‖(�̂(−:)�� )(�̂(−:)�� − �: �̂(−:)�� )′‖∞ ≤ 0# (4.2)

where 0# → 0 is a tuning parameter and the hessian matrix 3
3�!
(−:)
#�
(�̂'"!�) is

8It is not necessary to implement cross-fitting using LASSO in high-dimensional linear models, for
example, see Ning and Liu (2017) and Li (2024). However, cross-fitting may be useful in non-linear models.
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partitioned into four blocks corresponding to the partition of �, denoted as

©­«
�̂
(−:)
�� �̂

(−:)
��

�̂
(−:)
�� �̂

(−:)
��

ª®¬ := �̂(−:) := 3

3�
!
(−:)
#�
(�̂'"!�

:
)

If �̂�� is invertible and not ill-conditioned, then �̂'"!�
#,:

:= (�̂(−:)�� )−1 �̂
(−:)
�� .

The larger  ∈ N is, the more individuals are included in each training set I−: . In practice,

 is typically chosen to be 5 or 10, using 80% or 90% of data to estimate LASSO for each

:, respectively. To understand the selector in Eq.(4.2), let �̂(−:)��,1 and �:,1 be the first rows of

�̂
(−:)
�� and �: , respectively. We can always write �̂(−:)��,1 = �:,1 �̂

(−:)
�� + &1 as a linear projection

with the 1-by-3�# projection error &1, and the constraint implies ‖ �̂(−:)�� &1‖∞ ≤ 0# . When

the dimension 3�# is small, we can estimate �:,1 by the least squares. When 3�# is large,

there is no unique exact solution to �̂(−:)��,1 = �:,1 �̂
(−:)
�� as �̂(−:)�� can be singular, and Eq.(4.2)

finds the approximate solution with the minimal ;1-norm. In this section, the true value

�#,0 is defined as E[ %2

%�%�′!#�(�0)]−1E[ %2

%�%�′!#�(�0)] by assuming the first expectation is

non-singular. Chernozhukov et al. (2018) also shows that Eq.(4.1) satisfies the Neyman

near-orthogonal condition if �#,0 := arg min ‖�‖1 such that



E [
%2

%�%�′
!#�(�0)

] (
E

[
%2

%�%�′
!#�(�0)

]
− �E

[
%2

%�%�′
!#�(�0)

] )′ 




∞
≤ 0#

According to Li (2024), the CDML estimator �̂��"! given the first-stage estimates

{�̂'"!�
#,:

, �̂'"!�
#,:

} 
:=1, is defined as

�̂��"! := arg min
�∈Γ

"#� (�; �̂'"!�
# , �̂'"!�

# )′"#� (�; �̂'"!�
# , �̂'"!�

# )

:= arg min
�∈Γ






 1
 

 ∑
:=1

1
#/ 

∑
8∈I:

<8(�; �̂'"!�
#,:

, �̂'"!�
#,:

)





2

2

(4.3)

where <8(�;�, �) :=
∑�

9=0.8 9

(
%
%� log B8 9(�, �) − � %

%� log B8 9(�, �)
)
is the orthogonal score

28



function for individual 8 (cf. Eq.(3.5.) in Chernozhukov et al., 2018). To shorten notation,

let "# (�) := "#� (�; �̂'"!�
#

, �̂'"!�
#

). In fact, �̂��"! is a method of moment estimator

while the solution to "# (�) = 0 may be infeasible due to the constraints in Γ. Hopefully,

the objective function is well-defined even for � ∉ Γ such that the derivative 3
3� ‖"# (�)‖22

at �0 ∈ Γ can be taken from any directions, which makes the problem easier to analyze (cf.

Andrews, 1999; Ketz, 2018). For the rest of this section, I will prove that (i) �̂��"! →% �0

is consistent; (ii)
√
#(�̂��"! − �0) →3 #(0, +) if �0 is an interior point of Γ; and (iii)

√
#(�̂��"! − �0) converges to the projection of a multivariate normal distribution onto a

polytope if �0 is a boundary point of Γ.

Consider the second-order Taylor’s expansion of ‖"#� (�)‖22 at �0. Some algebraic

works show that

‖"# (�)‖22 = ‖"# (�0)‖22 −
1
2��‖"# (�0)‖22

[
�2
�‖"# (�0)‖22

]−1
��′‖"# (�0)‖22

− 1
2# @# (

√
#(� − �0)) + '# (�, �0)

(4.4)

where '# (�, �0) is the remainder term and

��′‖"# (�)‖22 :=2
[
��′"# (�)

]
"# (�)

�2
�‖"# (�)‖22 :=2

[
��′"# (�)

]
��"# (�) + 2

3�∑
9=1

"#,9(�)�2
�"#,9(�)

@# (G) := −
(
G +

[
�2
�‖"# (�0)‖22

]−1
#1/2��′‖"# (�0)‖22

)′
�2
�‖"# (�0)‖22(

G +
[
�2
�‖"# (�0)‖22

]−1
#1/2��′‖"# (�0)‖22

)
(4.5)

Here"#,9 is the 9-th coordinate of the vector"# . On the right-hand side of Eq.(4.4), only

the quadratic function @# (·) and the remainder '# (�, �0) depend on �. If the remainder is

sufficiently small in the neighborhood of �0 and the estimator �̂��"! →? �0 is consistent,

it is equivalent to study the asymptotic properties of − 1
2# @# (

√
#(� − �0)) and ‖"# (�)‖22.

According to Andrews (1999, Lemma 1), the following Assumption 6 guarantees that
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'# (�, �0) is asymptotic negligible, which is mild as "# (�) is a smooth function of �.

Assumption 6. For any 2# → 0,

sup
�∈Θ�(2# )



�2
�‖"# (�)‖22 − �2

�‖"# (�0)‖22



�
= >%(1)

where Θ�(2# ) := {� ∈ Θ� : ‖� − �0‖2 ≤ 2# }.

Given Assumption 6, it suffices to show the convergence of the vector ��′‖"# (�)‖22
and the matrix �2

�‖"# (�)‖22 by the definitions in Eq.(4.5). Under some regularity condi-

tions, it is expected that "#� (�0;�#,0, �#,0) →% 0 and ��′"#� (�0;�#,0, �#,0) →% Ω"

for some symmetric and non-singular matrix Ω" by the law of large numbers, and

#1/2"#� (�0;�#,0, �#,0) →3 #(0,Σ") for some variance-covariance matrix Σ" by the

central limit theorem. The term �2
�"#� ,9(�0;�#,0, �#,0) is tricky, however, it is asymptot-

ically negligible as long as its rate is slower than
√
# . Then, by the Slutsky’s theorem,

#1/2��′‖"# (�0)‖22 = 2
[
��′"#� (�0;�#,0, �#,0)

]
#1/2"#� (�0;�#,0, �#,0)

→3 2Ω"#(0,Σ")

�2
�‖"# (�0)‖22 = 2

[
��′"#� (�0;�#,0, �#,0)

]
��′"#� (�0;�#,0, �#,0) + >%(1)

→% 2Ω"Ω
′
"

(4.6)

as # → ∞. Although �̂# is shown to be “consistent” in the previous sections, its rate

is slower than
√
# due to the high dimensions, so that

√
#(�̂# − �#,0) diverges. We

need to additionally shows that
√
#"#� (�0; �̂'"!�

#
, �̂'"!�

#
) is a good approximation of

√
#"#� (�0;�#,0, �#,0) (and also their partial derivatives with respect to �) when �̂#,0 is

close to �#,0. Formally, it suffices to prove that

√
# ‖"#� (�0; �̂'"!�

# , �̂'"!�
# ) −"#� (�0;�#,0, �#,0)‖2 = >%(1)

‖��′"#� (�0; �̂'"!�
# , �̂'"!�

# ) − ��′"#� (�0;�#,0, �#,0)‖� = >%(1)
(4.7)
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In Theorem 2, I will show that both Eq.(4.6) and Eq.(4.7) hold given the following As-

sumptions 7 and 8.

Assumption 7 (Assumptions for Approximations). Let {Δ# , A#,� , A#,�}∞#=1 be sequences of

constants such that Δ# , A�,# , A�,# → 0 as # →∞. Suppose that the following conditions hold:

1. The data covariates are all bounded by a universal constant �30C0 > 0 that does not

depend on # ;

2. Withprobability greater than 1−Δ# , the nuisance estimators �̂#,: ∈ )�# and �̂#,: ∈ )�
#

belong to some nuisance realization sets)�
#

:= {� : ‖�−�#,0‖1∨‖�−�#,0‖2 ≤ A�,# } ⊂

N# and )�
#

:= {� : ‖� − �#,0‖1 ≤ A�,# } ⊂ R3�×3�# , respectively;

3. For any �# ∈ )�# , min9=0,...,� B8 9(�0, �# ) ≥ �B �−1;

4. �#,0 is a sparse matrix such that ‖�#,0‖1 = s�,# for a sequence of constants s�,# =

>(
√
#).

Conditions 1 and 3 in Assumption 7, adapted from Assumption 3, are sufficient to bound

the sup-norm ‖ 3
3�!#�(�0)‖∞. Combined with Condition 4, ‖"# (�0)‖∞ is also bounded.

I refer to the proofs on  -fold cross-fitting in Chernozhukov et al. (2018), and derive the

rate for"#� (�; �̂'"!�
#

, �̂'"!�
#

)−"#� (�0;�#,0, �#,0) by assuming Condition 2. The rates

A�,# and A�,# rely on the machine learning method applied in the first-stage estimation.

For example, in the case of LASSO, the rate A�,# = �s�,#
√
#−1 log 3� is given by Theorem

1.

Assumption 8 (Assumptions for LLN and CLT). #−1/2(1 + s�,# )� = >(1) and

lim
#→∞

+0A(<8(�0;�#,0, �#,0)) = Σ"

for some positive definite matrix Σ" .
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Assumption 8 is a regularity condition for the Lindeberg-Feller central limit theorem.

Theorem 2 (Approximation and Convergence). Under Assumption 7,

√
# ‖"#� (�0; �̂'"!�

# , �̂'"!�
# ) −"#� (�0;�#,0, �#,0)‖2

= $%

(
�2(1 + s�,# )A�,# + �A�,# +

√
#�3(1 + s�,# )A�,# +

√
#�2A�,# A�,#

)
‖��′"#� (�0; �̂'"!�

# , �̂'"!�
# ) − ��′"#� (�0;�#,0, �#,0)‖�

= $%

(
�3(1 + s�,# )A�,# + �2A�,# + �3A�,# A�,#

)
‖�2

�"#� ,9(�0;�#,0, �#,0)‖� = $%(�3(1 + s�,# )) for any � = 1, . . . , 3�

Furthermore, if Assumption 8 holds, then

#1/2"#� (�0;�#,0, �#,0) →3 #(0,Σ")

��′"#� (�0;�#,0, �#,0) →? Ω"

where

Ω" := E

�∑
9=0

.8 9

(
%2

%�%�′
ln B8 9(�0, �#,0) − �#,0

%2

%�%�′
ln B8 9(�0, �#,0)

)
Theorem 2 establishes both the rates of approximation and the limiting distributions.

It imposes restrictions on the sparsity s�,# , the number of alternatives �, and the quality

of machine learning algorithms reflected in A�,# and A�,# . In the case of LASSO, if we

assume that the sparsity of parameters satisfies s�,# ∨ s�,# = $(1), then the qualify of
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approximation is guaranteed when

A�,# = >

(
1
�3
∧ 1
#1/4�3/2

)
A�,# = >

(
1
�2

)
A�,# A�,# = >

(
1

#1/2�2

)
�3√
#
= >(1)

(4.8)

Furthermore, if we assume that � is small compared to # (e.g., � = log#), the conditions

in Eq.(4.8) holds if A�,# and A�,# are smaller than #−1/4, which is achievable for various

machine learning algorithms and nonparametric methods.

Assumption 9. Suppose that Γ is a non-empty compact subset ofR3� , �0 ∈ Γ is the unique solution

to E["#� (�;�#,0, �#,0)] = 0 and sup�∈Γ max9 B−1
8 9
(�, �#,0) = $(� log#) almost surely. In

addition, assume s�,# = $(1) and the rates in Eq.(4.8).

Assumption 9 provides sufficient conditions for the uniform law of large numbers

(ULLN) to prove �̂��"! →% �0. In addition to the conditions for identification and

approximation9, I assume that sup�∈Γ max9 B−1
8 9
(�, �#,0) may diverge (slightly faster than

the rate at � = �0) but the divergence is not too fast. As a crucial condition in the ULLN,

sup
�∈Γ
|‖"#� (�; �̂'"!�

# , �̂'"!�
# )‖22 − ‖E["#� (�;�#,0, �#,0)]‖22 | = >%(1) (4.9)

may fail if B−1
8 9
(�, �#,0) can be arbitrarily large for fixed �. Since the term B−1

8 9
(�, �#,0)

comes from the MLE score function 3
3� ln B8 9(�, �#,0), and the score can be regarded as the

efficient instrument (see Section 2), 9 can be interpreted as a boundedness condition on the

instrument. For example, theAssumptionA4 in Berry et al. (2004b) require the instrument

9The rate on s�,# can be relaxed, as long as the approximation in Theorem 2 is good. I assume s�,# = $(1)
for simplicity.
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variables to be $%(
√
�), which is equivalent to sup�∈Γ max9 B−1

8 9
(�, �#,0) = (1+ s�,# )−1√� in

my setting.

Theorem 3 below proves the consistency of �̂��"!, and then Theorem 4 derives the

limiting distribution for
√
#(�̂��"! − �0).

Theorem 3 (Consistency). Given Assumption 7 and 9, �̂��"! →% �0 as # →∞.

Theorem 4 (Limiting Distribution). Suppose that Assumptions 6, 7, 8 and 9 hold. Moreover,

assume that Ω"Ω
′
"

is positive-(semi)definite. Then, as # →∞,

√
#(�̂��"! − �0) →3 �̃ := arg min

�∈Γ(�0)
‖� + #(0, +")‖2Ω"

where Γ(�0) is a convex cone locally equal10 to Γ− �0,+" := (Ω"Ω
′
"
)−1Ω"Σ"Ω

′
"
(Ω"Ω

′
"
)−1,

and the (semi-)norm ‖�‖Ω" :=
√
�′Ω"Ω

′
"
�. Moreover,

ℳ# (�0) :=#
(
‖"#� (�̂��"!; �̂'"!�

# , �̂'"!�
# )‖22 − ‖"#� (�0; �̂'"!�

# , �̂'"!�
# )‖22

)
→3 − �̃′Ω"Ω

′
" �̃

When �0 is an interior point of Γ, �̃ follows the distribution #(0, +") which aligns

with the DML literature. The variance-covariance matrix+" consists of two components:

Σ" andΩ" . Here, Σ" is the population variance-covariance matrix for <8(�0;�#,0, �#,0),

and hence, a simple estimator is the variance-covariance matrix averaged over  :

Σ̂" := 1
 

 ∑
:=1

1
#/ 

∑
8∈ℐ:

<8(�̂��"!; �̂'"!�
#,:

, �̂'"!�
#,:

)<′8(�̂
��"!; �̂'"!�

# , �̂'"!�
#,:

)

−"#� (�̂��"!; �̂'"!�
# , �̂'"!�

# )"′#� (�̂
��"!; �̂'"!�

# , �̂'"!�
# )

Recall the definition ofΩ" in Theorem 2, then the estimator Ω̂" can be constructed based

10If a vector 1 is in a parameter space �, then � − 1 = {G − 1 | G ∈ �} is the shifted parameter space, and
0 ∈ � − 1. We say a convex cone � is locally equal to � − 1 if � ∩ �0;;(0, &) = � ∩ �0;;(0, &) for some & > 0.
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on �̂:

Ω̂" =
1
 

 ∑
:=1

�̂
(−:)
�� − �̂'"!�

#,:
�̂
(−:)
��

Note that Ω̂" is not necessarily symmetric, especially under cross-fittings. Although the

distribution of −�̃′Ω"Ω
′
"
�̃ does not have an explicit form for general Γ(�0) ⊂ R3� , its

quantile C(
, �0) can be simulated given the estimators Ω̂" and Σ̂" . In most scenarios,

Γ(�0) can be written as the product space of (−∞,∞), (−∞, 0] and [0,∞), so �̃ is the

projection onto a convex set and can be easily solved numerically by convex cone quadratic

programming. Depending on the setting, sometimes �̃ may have a closed-form solution.

See the following two examples.

Example 1. If the standard deviation is the only target parameter, then � = Σ ∈ [0,∞).

As a result, the convex cone Γ(�0) = (−∞,∞) if the true value Σ0 > 0, and Γ(�0) = [0,∞)

if the true value Σ0 = 0. As a result, �̃ ∼3 #(0, +") in the former case while �̃ ∼3
max{0,−#(0, +")} in the latter case.

Example 2. Suppose that there is only one random coefficient and its true value is on

the boundary. Let � = (
′,Σ)′ = (
′, 0)′, the projection �̃ is explicit by verifying the

Karush-Kuhn-Tucker (KKT) condition. Suppose that the projection has the form

�̃ = arg min
�Σ≥0

©­«
�
 + 1


�Σ + 1Σ

ª®¬
′ ©­«

� �

� �

ª®¬ ©­«
�
 + 1


�Σ + 1Σ

ª®¬
where (1′
 , 1Σ)′ follows the multivariate normal distribution #(0, +"). Then, it can be

derived that

(�̃
 , �̃Σ) =


(−1

2�
−1(�′ + �)1Σ − 1
 , 0) if

(
2� − 1

2(� + �′)�−1(�′ + �)
)
1Σ > 0

(−1
 ,−1Σ) otherwise

where �̃Σ is a mixture of a degenerate distribution at zero and a normal distribution, and
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�̃
 is a mixture of normal distributions.

In addition, Theorem 4 implies thatℳ=(�0) can be regarded as a quasi-likelihood ratio

statistic, whose critical values can be obtained from simulations. I introduce the procedure

in Algorithm 2.

Algorithm 2 QLR Test with Simulated Critical Values

1. Given a null hypothesis �0 : �0 = 1, solve the convex cone Γ(1);

2. Estimate the CDML variance +̂" and the matrix Ω̂" ;

3. Draw a sequence of vectors G1, . . . , G� ∼ 8.8.3. #(0, �3�)), then solve

�̃8 = arg min
�∈Γ(1)




� + +̂1/2
"
G8




2

Ω̂"

for 8 = 1, . . . , �

4. Solve Ĉ8(1) := −�̃′
8
Ω̂"Ω̂

′
"
�̃8 for 8 = 1, . . . , �;

5. The 
-quantile of C8(1), denoted by �̂=,�(
, 1), is the critical value for the QLR test
at the level 
.

5 Simulation

5.1 Settings

In this section, I illustrate the effects of high dimensions and parameters on the boundary

byMonteCarlo simulations. Consider the followingmodel of indirect utility for individual

8 choosing alternative 9 in market C:

*8 9C = � 9C + �8 9C + �8 9C

� 9C = �̄ + -′9C�
G + %9C
 = 1 + 2-9C − 2%9C

�8 9C = (-9C ⊗ !8)′Π + (-9C � �8)′Σ = (1, 0, 0, . . . , 0)(-9C ⊗ !8) + -9C�8Σ
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where �0C = �80C = 0 for every C = 1, . . . , ). The exogenous variable -9C is a scalar

that follows i.i.d. #(0, 1) truncated by the interval [−3, 3]. There is only one random

coefficient with standard deviation Σ which is equal to either 0 (on the boundary) or

1 (off the boundary). Many questions are true-or-false or categorical in survey data,

and researchers construct dummy variables carefully to avoid of multi-collinearity. To

mimic the scenario, I partition the 3!-dimensional random vector !8 into a vector !8 ,=>A<0;

of length b3!/10c, which follows #(0, �3!) truncated by −3 and 3, and another vector

!8 ,14A=>D;;8 of length 3! − b3!/10c, where each element follows Bernoulli(0.5). The error

term �8 9 ∼ 8.8.3. Gumbel(0, 1) has mean 0.577 and variance 1.645. Since the issues of high

dimensions and parameters on the boundary enter the model separate from endogeneity,

I assume that the price %9C ∼ 8.8.3. *[0, 1] is exogenous for simplicity. 11

I consider ) = 10 markets where each market has equally =C consumers making

decisions among variously �C ∈ {3, 5, 7} alternatives and one outside option (9 = 0). Let =C

be 100 (small-sample) and 200 (large-sample), the total number of consumers # =
∑
C =C is

equal to 1,000 and 2,000, respectively. The total number of alternatives � =
∑
C �C is between

40 and 80, including the outside options. I choose dimensions 3! ∈ {1, 96, 196, 296} such

that the total number of parameters 3� ∈ {5, 100, 200, 300}. Given the single random

coefficient, Gauss-Hermite quadrature is more precise and efficient in computation than

quasi Monte Carlo integration (see Appendix D). I set � = 20 nodes to mitigate the

approximation error from numerical integration, aligning with Train (2000) and Conlon

and Gortmaker (2020). In simulations, I find that larger � is preferred for CDML to be

numerically stable because CDML is built upon the gradient containing B−1
8 9
(·).

I compare three methods in 500 simulations: the traditional MLE (denoted as MLE

later), the regularized MLE (RMLE) in Eq.(2.2), the CDML estimator (CDML) in Eq.(4.3)

with the sample analog �̂'"!�. Both MLE and RMLE estimate all parameters � =

11To account for endogeneity, we can consider thedesign inLu et al. (2023) and let%9C = & 9C+�9C+& 9C , where
& 9C ∼ #(0, 1) is the exogenous cost shifter, �9C ∼ #(0, 0.52) is the unobserved quality, and & 9C ∼ #(0, 0.12) is
the cost shock. I leave this for future research.
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(�̄, �G , 
,Π′,Σ)′ simultaneously,whileCDMLonlydebias the targetparameter � = (�̄, �G , 
,Π1,Σ)′.

The first-stage estimates inCDMLs are obtained through 5-fold cross-fitting to utilizemore

samples in each fold. The choice of the tuning parameter �# in RMLE and CDMLs is

based on 5-fold cross-validations (see Appendix C).

5.2 Estimation

Table 5.1 summarizes the statistics for the estimators when the true parameter Σ = 1 ∈

[0,∞) is off the boundary. The first column displays the total dimensions, and the second

column indicates the estimationmethods. The next five columns report the average biases

across 500 simulations for five parameters, respective, while the last five columns present

the square root of the mean square errors (RMSE). Starting with the upper panel, where

the sample size # = 1, 000 is small, all three methods perform similarly well when the

dimension 3� = 5 is low. RMLE shows slight biases towards zero in estimating Π1 and

Σ. When 3� = 100, MLE has the smallest bias but the largest RMSE in estimating �G .

As the dimension increases to 3� = 200, RMLE and CDML show their robustness to

dimensions and yield similar results to those for 3� = 100. MLE suffers from overfitting

in terms of severe downward biases in estimating Σ. Although MLE still has the smallest

bias in estimating �G , it exhibits large variances reflected in the RMSE. In contrast, RMLE

estimates are biased but have smaller variances. CDMLs havemoderate biases andRMSEs

across parameters. Similar conclusions can be derived when 3� = 300. The lower panel,

where the sample size is increased to # = 2, 000, reveals similar conclusions. All biases

and RMSEs decreases as expected, suggesting convergence of the estimators. MLE is now

able to detect non-zeroΣwhen 3� = 300, but it is still outperformed byRMLE andCDMLs.

Similar to Table 5.1, Table 5.2 reports the biases andRMSEswhen the parameterΣ = 0 ∈

[0,∞) is on the boundary. Interestingly, inability to detect the random coefficient appears

to be an advantage in this case. When the dimension 3� = 5 is low, the estimators from

four methods are comparable. When 3� = 200, MLE estimates Σ with perfect precision,

38



Table 5.1: Bias and RMSE of Target Parameter Estimates (Off Boundary)

3� Method
Bias RMSE

�̄ �G 
 Π1 Σ �̄ �G 
 Π1 Σ

# = 1000
5 MLE 0.006 0.013 -0.014 0.009 -0.001 0.145 0.142 0.210 0.109 0.173

RMLE 0.008 -0.027 0.005 -0.048 -0.042 0.145 0.138 0.207 0.112 0.172
CDML 0.006 0.012 -0.014 0.009 -0.002 0.145 0.142 0.210 0.108 0.172

100 MLE 0.005 -0.002 -0.001 0.005 -0.277 0.148 0.845 0.201 0.112 0.336
RMLE 0.011 -0.106 0.052 -0.157 -0.118 0.147 0.180 0.205 0.185 0.204
CDML -0.002 0.159 -0.084 0.095 0.289 0.167 0.659 0.283 0.218 0.561

200 MLE 0.023 -0.089 0.002 -0.003 -0.932 0.160 1.353 0.201 0.117 1.015
RMLE 0.015 -0.119 0.046 -0.181 -0.131 0.154 0.186 0.197 0.202 0.215
CDML 0.006 0.105 -0.079 0.060 0.200 0.165 0.575 0.258 0.161 0.434

300 MLE 0.037 0.109 -0.094 0.127 -1.407 0.163 2.049 0.242 0.193 1.409
RMLE 0.019 -0.133 0.052 -0.190 -0.160 0.145 0.194 0.204 0.209 0.237
CDML 0.005 0.088 -0.075 0.069 0.193 0.157 0.533 0.269 0.183 0.459

# = 2000
5 MLE 0.002 0.002 0.008 0.000 -0.008 0.109 0.103 0.145 0.073 0.115

RMLE 0.002 -0.026 0.022 -0.040 -0.037 0.108 0.103 0.145 0.081 0.119
CDML 0.002 0.002 0.007 0.000 -0.009 0.109 0.103 0.145 0.073 0.115

100 MLE 0.002 0.017 0.002 0.001 -0.135 0.097 0.580 0.140 0.075 0.182
RMLE 0.006 -0.076 0.040 -0.110 -0.091 0.096 0.134 0.143 0.131 0.147
CDML -0.007 0.129 -0.054 0.061 0.187 0.113 0.548 0.195 0.141 0.378

200 MLE 0.004 0.023 0.006 -0.001 -0.301 0.111 0.906 0.146 0.075 0.332
RMLE 0.007 -0.086 0.048 -0.127 -0.105 0.109 0.131 0.150 0.144 0.156
CDML -0.004 0.128 -0.061 0.064 0.195 0.125 0.600 0.215 0.151 0.416

300 MLE 0.005 -0.086 0.013 0.000 -0.542 0.106 1.095 0.143 0.080 0.591
RMLE 0.005 -0.092 0.050 -0.132 -0.116 0.103 0.138 0.148 0.148 0.171
CDML -0.006 0.079 -0.055 0.065 0.186 0.118 0.557 0.199 0.159 0.416

Notes: In the first column 3�, the natural numbers show the total dimension of the parameter � =

(�̄, �G , 
,Π′,Σ)′. The second column reports three methods of estimation in our simulation study: the
maximum likelihood estimation (MLE), the regularized MLE (RMLE), and the constrained debiased ma-
chine learning (CDML). Columns 3 to 7 indicate the average biases 1

(

∑(
B=1(�̂

(B)
9
− �9 ,0) of five estimators

over ( = 500 Monte Carlo simulations. The last five columns report the square root of mean square errors
(RMSE)

√
1
(

∑(
B=1(�̂

(B)
9
− �9 ,0)2 for the estimators.
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Table 5.2: Bias and RMSE of Target Parameter Estimates (On Boundary)

3� Method
Bias RMSE

�̄ �G 
 Π1 Σ �̄ �G 
 Π1 Σ

# = 1000
5 MLE 0.004 0.036 -0.032 0.016 0.163 0.137 0.111 0.194 0.081 0.263

RMLE 0.005 0.006 -0.017 -0.021 0.139 0.136 0.100 0.189 0.080 0.235
CDML 0.004 0.033 -0.030 0.015 0.159 0.137 0.109 0.193 0.081 0.251

100 MLE -0.002 0.217 -0.088 0.088 0.001 0.160 0.782 0.228 0.129 0.020
RMLE 0.004 -0.039 0.028 -0.087 0.073 0.148 0.119 0.192 0.116 0.164
CDML 0.004 0.115 -0.045 0.059 0.055 0.168 0.682 0.269 0.223 0.204

200 MLE 0.003 0.482 -0.246 0.210 0.000 0.193 1.464 0.365 0.241 0.000
RMLE 0.007 -0.044 0.010 -0.102 0.072 0.153 0.124 0.186 0.127 0.164
CDML 0.008 0.090 -0.049 0.037 0.028 0.165 0.557 0.241 0.179 0.135

300 MLE 0.004 0.909 -0.378 0.411 0.000 0.229 2.328 0.506 0.451 0.000
RMLE 0.011 -0.058 0.022 -0.109 0.059 0.142 0.130 0.179 0.132 0.148
CDML 0.011 0.044 -0.020 0.020 0.015 0.146 0.358 0.199 0.123 0.080

# = 2000
5 MLE 0.001 0.020 -0.004 0.009 0.138 0.105 0.074 0.134 0.057 0.216

RMLE 0.001 -0.001 0.006 -0.017 0.116 0.105 0.068 0.133 0.057 0.193
CDML 0.002 0.018 -0.003 0.008 0.133 0.105 0.073 0.134 0.057 0.205

100 MLE 0.000 0.107 -0.044 0.036 0.008 0.105 0.506 0.147 0.071 0.049
RMLE 0.002 -0.030 0.021 -0.068 0.061 0.099 0.089 0.129 0.088 0.136
CDML 0.004 0.073 -0.043 0.031 0.074 0.113 0.508 0.215 0.131 0.230

200 MLE 0.001 0.265 -0.107 0.085 0.000 0.116 0.779 0.197 0.110 0.000
RMLE 0.004 -0.036 0.014 -0.072 0.053 0.101 0.088 0.140 0.088 0.124
CDML 0.010 0.109 -0.060 0.047 0.027 0.132 0.591 0.225 0.166 0.120

300 MLE -0.002 0.409 -0.158 0.144 0.000 0.128 1.133 0.236 0.164 0.000
RMLE 0.001 -0.045 0.019 -0.076 0.044 0.100 0.091 0.130 0.091 0.113
CDML 0.004 0.088 -0.049 0.043 0.016 0.112 0.535 0.196 0.140 0.092

Notes: In the first column 3�, the natural numbers show the total dimension of the parameter � =

(�̄, �G , 
,Π′,Σ)′ and the brackets report the dimension-sample ratio 3�/# . The second column reports
four methods of estimation in our simulation study: the maximum likelihood estimation (MLE), the reg-
ularized MLE (RMLE), the constrained debiased machine learning (CDML) and the CDML with Dantzig
selector (CDML-D). Columns 3 to 7 indicate the average biases 1

(

∑(
B=1(�̂

(B)
9
− �9 ,0) of five estimators over

( = 500Monte Carlo simulations. The last five columns report the square root ofmean square errors (RMSE)√
1
(

∑(
B=1(�̂

(B)
9
− �9 ,0)2 for the estimators.
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which is by coincidence. However, it is more biased in estimating other parameters except

for the intercept �̄. In contrast, RMLE and CDML show some biases in estimating Σ but

outperformsMLE in the other parameters, and their performance remainswhen 3� = 300.

5.3 Inference

Statistical inference for the target parameters is also of interest. Table 5.3 presents the

frequencies of coverage and the median12 lengths of the 95% confidence intervals (CI) for

the target parameters across three methods when Σ = 1 ∈ [0,∞). Note that I calculate

the standard errors for RMLE in the same way as those in MLE, as the penalty term is

shrinking after dividing by # , in order to show the consequence of misusing the standard

errors. In the small-sample and small-dimensional setting with # = 1, 000 and 3� = 5,

three methods yield similar CI coverages that are close to 95%. When 3� = 100, MLE

still has nice coverage of CIs except for the parameter Σ. Inference based on RMLE is

invalid due to the regularization bias in the estimation. CDMLs have good coverages for

all parameters, which dominatesMLE and RMLE. As the dimension increases to 3� = 200,

CDMLs surpass both MLE and RMLE. Particularly, CDML has smallest CI length for the

parameter �G with the best CI coverage. When 3� = 300, MLE has almost zero coverage

of CIs for Σ, while CDML still provide valid CIs. When the sample size increases to

# = 2, 000, MLE is greatly improved but still unable to cover Σ.

Table 5.4 reports the coverage rates and lengths when Σ = 0 is on the boundary.

Notably, the 95% CI for Σ is constructed based on the critical region of a one-sided t-test

(�0 : Σ = 0 versus �1 : Σ > 0) at the 5% significance level, so the length of CI is 1.64

times the estimated standard error. The results show that CDMLs provide around 95%

coverages for Σ when 3� = 200 and 3� = 300, whereas both MLE and RMLE have 100%

coverage due to coincidence. Instead of adjusting the standard errors due to the boundary

12I report the median to mitigate the influence of the extreme estimates, which can arise in small sample
sizes.
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Table 5.3: Coverage and Length of 95% Confidence Intervals (Off Boundary)

3� Method
95% CI Coverage (%) 95% CI Length (Median)

�̄ �G 
 Π1 Σ �̄ �G 
 Π1 Σ

# = 1000
5 MLE 96.0 94.8 94.2 94.0 93.2 0.570 0.538 0.761 0.404 0.318

RMLE 96.0 93.8 94.4 91.0 93.0 0.566 0.524 0.754 0.387 0.311
CDML 96.0 94.8 94.2 93.6 93.0 0.569 0.538 0.758 0.404 0.317

100 MLE 93.8 92.8 95.0 94.2 59.6 0.565 3.285 0.748 0.405 0.383
RMLE 94.4 100 94.2 66.2 98.0 0.568 3.404 0.777 0.404 0.479
CDML 94.6 91.0 96.6 98.0 97.2 0.596 1.938 0.901 0.624 0.734

200 MLE 92.4 90.2 93.8 90.8 11.0 0.559 4.333 0.751 0.387 0.426
RMLE 91.6 100 88.8 51.6 99.8 0.547 4.722 0.704 0.326 1.040
CDML 93.4 93.4 96.2 97.2 97.6 0.587 1.622 0.876 0.559 0.587

300 MLE 92.6 85.2 89.2 73.4 0.6 0.572 5.918 0.772 0.418 0.284
RMLE 95.0 100 91.6 50.0 100 0.558 6.266 0.706 0.390 3.750
CDML 95.0 90.8 95.6 98.0 97.2 0.593 1.573 0.878 0.587 0.626

# = 2000
5 MLE 94.0 95.0 94.0 95.0 95.4 0.399 0.383 0.540 0.286 0.223

RMLE 94.2 92.6 93.6 88.8 94.4 0.398 0.376 0.537 0.276 0.219
CDML 93.8 94.6 94.2 94.8 95.6 0.399 0.383 0.541 0.286 0.223

100 MLE 96.2 95.0 95.4 93.4 77.0 0.400 2.223 0.545 0.285 0.224
RMLE 96.2 100 94.2 63.8 93.8 0.398 2.214 0.542 0.274 0.256
CDML 97.0 92.4 97.4 98.2 99.2 0.418 1.579 0.633 0.409 0.486

200 MLE 93.6 92.0 94.0 93.0 30.4 0.399 3.120 0.538 0.284 0.227
RMLE 95.0 100 93.6 59.8 97.6 0.402 3.212 0.559 0.290 0.336
CDML 95.4 92.4 97.0 98.8 99.4 0.418 1.579 0.636 0.414 0.478

300 MLE 93.8 90.6 94.0 91.8 3.6 0.401 3.799 0.539 0.285 0.246
RMLE 94.6 100 94.0 75.4 100 0.407 4.106 0.588 0.334 0.554
CDML 94.6 91.8 96.2 98.2 97.4 0.418 1.423 0.630 0.409 0.457

Notes: In the first column 3�, the natural numbers show the total dimension of the parameter � =

(�̄, �G , 
,Π′,Σ)′. The second column reports three methods of estimation in our simulation study: the
maximum likelihood estimation (MLE), the regularized MLE (RMLE), and the constrained debiased ma-
chine learning (CDML). The 95% confidence intervals (CI) are constructed by the estimators plus andminus
1.96 multiplied by the estimated standard errors. The percentages are the counts that the true parameter is
covered by the estimated CI divided by 500 (total number of simulations). The length of 95%CI is calculated
as 3.92 multiplied by the estimated standard errors. To mitigate the influence of extreme estimates due to
the small sample sizes, the median length is reported instead of the mean.
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Table 5.4: Coverage and Length of 95% Confidence Intervals (On Boundary)

3� Method
95% CI Coverage (%) 95% CI Length (Median)

�̄ �G 
 Π1 Σ �̄ �G 
 Π1 Σ

# = 1000
5 MLE 95.4 93.2 94.8 95.6 80.6 0.552 0.385 0.712 0.308 0.609

RMLE 95.4 94.8 95.6 93.4 83.8 0.552 0.362 0.706 0.300 0.591
CDML 95.4 93.0 94.8 95.4 75.0 0.554 0.375 0.714 0.306 0.296

100 MLE 93.0 92.6 91.2 83.0 100 0.560 2.792 0.742 0.341 0.352
RMLE 94.2 100 93.4 81.0 98.0 0.553 2.641 0.723 0.313 0.608
CDML 93.4 95.4 95.0 96.8 86.2 0.563 1.734 0.772 0.388 0.025

200 MLE 88.2 90.8 70.2 48.0 100 0.577 4.768 0.785 0.413 0.253
RMLE 93.8 100 94.6 81.4 100.0 0.554 4.133 0.725 0.342 0.526
CDML 92.6 96.0 92.6 95.8 88.4 0.555 1.366 0.747 0.392 0.026

300 MLE 84.0 88.0 54.6 19.0 100 0.610 7.360 0.852 0.520 0.211
RMLE 97.0 100 95.2 84.2 100 0.561 5.606 0.742 0.375 0.494
CDML 96.0 95.0 95.2 96.0 92.2 0.562 1.252 0.753 0.418 0.028

# = 2000
5 MLE 94.4 95.4 94.4 95.2 82.2 0.387 0.271 0.508 0.216 0.507

RMLE 94.4 95.4 94.4 93.8 85.2 0.386 0.258 0.504 0.212 0.498
CDML 94.4 95.4 94.6 95.0 78.4 0.389 0.262 0.510 0.215 0.271

100 MLE 95.2 93.6 92.2 89.2 99.4 0.392 1.829 0.509 0.225 0.338
RMLE 95.8 100 95.0 76.2 96.0 0.390 1.786 0.506 0.215 0.497
CDML 95.0 95.0 95.4 96.4 83.4 0.396 1.482 0.543 0.262 0.028

200 MLE 91.2 93.0 82.6 70.0 100 0.397 2.773 0.520 0.241 0.241
RMLE 95.4 100 94.2 79.2 98.2 0.391 2.630 0.510 0.222 0.470
CDML 94.4 97.8 93.6 98.8 89.6 0.399 1.633 0.554 0.292 0.033

300 MLE 89.6 90.4 73.8 44.2 100 0.407 3.761 0.542 0.266 0.198
RMLE 95.6 100 95.4 76.4 99.8 0.395 3.414 0.512 0.232 0.446
CDML 94.8 97.4 96.4 96.2 91.0 0.404 1.632 0.565 0.322 0.030

Notes: In the first column 3�, the natural numbers show the total dimension of the parameter � =

(�̄, �G , 
,Π′,Σ)′. The second column reports three methods of estimation in our simulation study: the
maximum likelihood estimation (MLE), the regularized MLE (RMLE), and the constrained debiased ma-
chine learning (CDML). The 95% confidence intervals (CI) are constructed by the estimators plus andminus
1.96 multiplied by the estimated standard errors except for Σ, which is on the boundary. The 95% CI for Σ
is constructed as [Σ̂ − 1.64�(�(Σ), Σ̂], similar to a one-sided C-test. The percentages are the counts that the
true parameter is covered by the estimated CI divided by 500 (total number of simulations). The length of
95% CI is calculated as 3.92 multiplied by the estimated standard errors, except for Σ which is 1.64�(�(Σ).
To mitigate the influence of extreme estimates due to the small sample sizes, the median length is reported
instead of the mean. 43



(see Example 2 in Section 4), the CIs for the unconstrained parameters are constructed as

if they follow an asymptotic normal distribution. The table illustrates that both MLE and

RMLE suffer from the increasing dimensions to which CDMLs are robust.

5.4 Price Elasticities

Finally, I calculate the own-price and cross-price elasticities defined in Eq.(3.5), referring

to the procedure in Lesellier et al. (2023): simulate 500 datasets, estimate the coefficients

for four methods, solve the own-price elasticity for the alternative 9∗ = 1 in the market

C = 1 and the cross-price elasticity for the alternative 9 = 2 with respect to the price ? 9∗ . I

calculate the elasticities at an equally spaced grid of ? 9∗ from [−2, 2] for the 500 datasets,

and then summarize the mean, the 2.5% and 97.5% quantiles of the elasticities over the

simulations in Figures 5.1, A.1, A.2 and A.3.

Figure 5.1 illustrates the price elasticities when # = 1, 000, � = 30 and Σ = 1 (off the

boundary). The upper three panels display the own-price elasticities and the lower three

panels show the cross-price elasticities, where the dimension 3� is 14, 204 and 304, re-

spectively. The black solid lines represent the average elasticities given the true parameter

�0, with the shaded areas indicating the 95% confidence intervals. The other solid lines

correspond to the average estimated elasticities for the fourmethods, and the dashed lines

represent the 2.5% and 97.5% quantiles for each method. In the low-dimensional case

with 3� = 14 (i.e., the first column), all four methods provide similar means and quan-

tiles for the estimated elasticities. The own-price elasticities are overestimated with the

means greater than the true value, and the cross-price elasticities are estimated precisely.

When 3� increases to 204, differences between the methods become more pronounced.

For the own-price elasticities, MLE has the closest mean to the true value, but with the

largest variance. RMLE has the smallest variance but suffers from a significant upward

bias. CDMLs also exhibit larger variances than the true value, though CDML-Dantzig

performs slightly better than CDML in this regard. For the cross-price elasticity, CDMLs
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outperform MLE and RMLE, where MLE shows too much variance and RMLE shows

too little. In the high dimension with 3� = 304, MLE becomes less informative for both

elasticities with its CIs nearly double the length of the true CIs. RMLE is robust to the

increasing dimension but continues to be biased towards zero. CDMLs remain robust to

the dimension, showing less bias than RMLE and smaller variances than MLE. Figures

A.1, A.2 andA.3 suggest similar conclusionswhen the large sample size# = 2, 000 and/or

Σ = 0 is on the boundary.

6 Application

To demonstrate the effect of high-dimensional individual covariates and possibly diluted

random coefficients, I estimate the demand for soft drinks in North Carolina in the year

2011 and calculate the own- and cross-price elasticities based on the estimates, using the

micro-level datasets provided by NielsonIQ.

6.1 Data

Comprehensive marketing datasets, such as the NielsenIQ Consumer Panel dataset and

the Retailer Scanner dataset, are accessible upon requests through the Kilts Center at the

Chicago Booth School of Business. The consumer panels consist of representative13 and

qualified households (40,000-60,000 every year) that continuously report their personal

purchases using in-home scanners. As an example, in the panel year 2011, there were

62,092 households recorded in the consumer panel whose family sizes are depicted in

Figure 6.1, where

approximately 25.5% of households comprise only one member and 42.3% of house-

holds comprise two. The retailer scanner data include weekly pricing, volume and store

environments from over 90 participating retail chains with 35,000-50,000 participating

13The active panelists are projectable to the total United States using household projection factors, accord-
ing to the Kilts Center website.
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Figure 6.1: Household Sizes in the 2011 Consumer Panels
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stores. These two datasets provide researchers with valuable information, for example, (i)

household demographic variables (e.g., income, family size, age, composition and living

conditions), (ii) geographic variables related to households and stores (zip codes, region,

etc.) and (iii) product characteristics (e.g., description, brand, pack size, flavor for food

products). Moreover, each household is assigned a unique household ID (HHID) and each

product is identified by a universal product code (UPC), enabling researchers to track the

information on what products were purchased, when, and where.

In addition to theConsumerPanel, NielsonIQoffers twocomplementary surveydatasets:

Annual Ailments, Health, and Wellness Survey (Ailment Survey) and Custom Panel View Sur-

veys (CustomSurvey). The ailment survey, started in 2011 and is updated annually, provides

detailed information on panelists’ health conditions covering heartburn, muscle pain, di-

abetes, cancer, heart disease, obesity, and other ailments. All household members aged

thirteen and older are asked to report their experiences with thirty-four different ailments.

For each selected ailment, the respondent is required to provide details on the timeline

of diagnosis, the treatment (e.g., medications and/or exercises), and their most recent

47



experience with the condition. The survey also includes the enrollment of health insur-

ance and related health activities. The custom survey is available in the panel year 2008

and 2011. Each household member participating in the survey is asked about the age,

gender, highest educational level (and their major if applicable), current employment,

(sub-)occupation, categories of products the member has purchased or used, scientific

questions corresponding to the categories (e.g., ingredient), attitude towards price, brand

(store brands versus national brands) and quality as well as the role within the household.

Since all the four datasets are available only in 2011, I focus on the panel year 2011 to

include individual information as much as possible. Importantly, both the ailment survey

and the custom survey collect responses at the individual level via questionnaires, so they

cannot be directly merged with the consumer panels. I provide my strategy of merging in

Appendix B.

Although the datasets cover most states in the U.S., focusing on a single state not only

simplifies the computation but also the choice of the instrumental variables. Following

the literature (Allcott et al., 2019; Conlon and Gortmaker, 2023), I use contemporaneous

prices in the states that are adjacent to the North Carolina (i.e., Virginia, Tennessee, and

South Carolina) as aHausman (1996)-type instrument for prices. Moreover, restricting the

analysis to a small region helps define the markets clearly and ensures that most inside

options are available to all consumers. In the 2011Consumer Panel, 2,246 householdswere

fromNorth Carolina while 1,179 of them completed both surveys with full information. It

is possible that some households never consider purchasing soft drinks, and hence, are not

in the soft-drink market. Therefore, I further restrict the sample to 1,136 households who

had purchased soft drinks at least once in 2011 and regard them as in-market consumers.

By matching the HHIDs with the UPCs, 1,693 varieties of soft drinks (including diet

drinks but excluding juice and fruit drinks) were sold during approximate 230,000 visits

to NielsonIQ retailers. These soft drinks differed in brands, sizes, flavors and containers.

However, it is unrealistic to assume that households have full access to and rationally
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compare all these numerous products before selecting the best one. In addition, Assump-

tion 9 may fail in this context due to the tiny choice probabilities. To address these issues

and provide reliable results, I calculate the market shares and retain only the top twenty

brands by sales. Specifically, I classify different sizes of the same product (e.g., Regular

Coke in 24 cans and 6 cans) as the same brand, while different varieties (e.g., Regular Coke,

Diet Coke, and Caffeine Free Coke) are considered distinct brands. The remaining brands

are grouped as outside options. The market shares B 9C are calculated quarterly for each

quarter C = 1, . . . , 4 of the panel year 2011. For each C, B 9C is equal to the total ounces of

brand 9 purchased divided by the total ounces purchased in the market. There are eighty

inside alternatives over the year with four outside options. The minimum market share

min9 ,C B 9C was approximately 1%, and the maximum market share max9 ,C B 9C was about

13%. I also find that the top brands are widely recognized, and believe that they were

fully accessible to the in-market consumers.

6.2 Model

The following model is used to analyze the markets of soft drinks. For each market

(quarter) C = 1, . . . , 4 and themarket-specific twenty alternatives 9 = 1, . . . , 20, the indirect

utility of a household 8 = 1, . . . , =C in the market is defined as

*8 9C = � 9C + �8 9C + �8 9C , �8 9C ∼ 8.8.3. Type I EV

� 9C = �̄ +Diet9C�G + %9C
 + �9C

�8 9C = (Diet9C ⊗ !8)′Π + (Diet9C � �8)Σ, �8 ∼ 8.8.3. #(0, 1)

where Diet9C = 1 if the soft drink 9 in market C is diet and Diet9C = 0 otherwise. %9C is

the price per ounce. I normalize the outside options *80C = 0 and introduce plentiful

household-level characteristics in !8 . There are two settings for !8 representing varying

levels of household detail:
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• !�0B4
8

is a vector of 8 variables related to households’ income, age, size, and race;

• !(28
8

, in addition to !�0B4
8

, includes 674 variables related to the households’ composi-

tion, scientific knowledge of daily products, and preferences on prices and brands.

For each setting, I estimate six models and compare the coefficients. I first assume exoge-

nous price (so �9C = 0) and estimate all parameters simultaneously with MLE, RMLE and

CDML14. Next, I assume endogeneity (so �9C ≠ 0), estimate the mean utility � 9C as well as

the nonlinear parameters Π and Σ. Then I use two-stage least squares (2SLS) to recover

the linear parameters �̄, �G and 
. Particularly, given that (� 9C)9 ,C has a large dimension

3� = 80, in CDML I only debias the coefficients for the household income (denoted asΠ1)

and the standarddeviationΣ of the diet dummy. Note that the estimated linear parameters

are slightly different by RMLE and CDML in this case because of the 4-fold cross-fitting.

Also, the price elasticities can be different due to the random coefficient. Given the single

random coefficient, I use a Gauss-Hermite quadrature with ( = 100 nodes to balance the

accuracy of approximation and the cost of computation. The choice of tuning parameter

�# is based on a 4-fold cross-validation over markets.

6.3 Result

Table 6.1 presents the estimated target parameters and corresponding standard errors

(only for MLE, CDML and 2SLS) from the baseline models using !8 = !�0B4
8

. The stan-

dard errors of RMLE are infeasible except for those in Column (5) that are derived from

2SLS. Columns (1)-(3) report estimates frommodels that assumes exogenous prices, while

columns (4)-(6) account for price endogeneity and recover the intercept, the coefficients for

the diet dummy and price by 2SLS. In columns (1) and (3), all coefficients are statistically

significant at least at the 10% level. Particularly, the coefficient of price has a p-value be-

low 0.1%, suggesting a strong price effect on soft-drink demand. The standard deviations

14CDML debiases the target parameters �̄, �G , 
, Σ and the effect of household income Π1, with a 4-fold
cross-fitting.

50



Table 6.1: Estimated Coefficients for Baseline Models

MLE RMLE CDML MLE RMLE CDML
(1) (2) (3) (4) (5) (6)

Intercept 0.423*** 0.420 0.440*** -0.286 -0.306 -0.296
(0.094) (0.101) (0.423) (0.412) (0.426)

Price -25.766*** -25.741 -25.370*** -6.624 -6.182 -6.394
(2.779) (3.075) (15.367) (14.651) (15.143)

Diet -4.061* -1.438 -3.467* -2.827*** -1.212*** -2.063***
(2.424) (2.073) (0.145) (0.138) (0.143)

Diet × HH Income 0.242* 0.063 0.261*** 0.167 0.051 0.135***
(0.125) (0.087) (0.451) (0.004)

RC.Diet 7.864** 1.209 8.464*** 5.286 0.034 4.119***
(4.060) (2.900) (15.367) (0.457)

N 4038
J 80
Dim 12 12 5 89 89 2
Obj Func -11915.79 -11926.35 1.98E-06 -11325.16 -11355.3 1.12E-06
Sparsity 3 3
2SLS x x x

Notes: Models in columns (1)-(3) assume that the prices of soft drinks are exogenous, while models in
columns (4)-(6) account for the price endogeneity. The intercept, the coefficients for the diet dummy and
price are directly estimated in column (1)-(3) and are recovered by two-stage least squares (2SLS) in columns
(4)-(6). The row RC.Diet represents the estimated standard deviation for the random coefficient of the diet
dummy. Standard errors of estimates are listed in parentheses. The standard errors of RMLE are infeasible
except for those in Column (5) that are derived from 2SLS. The asterisks *, ** and *** represent the significant
level at 10%, 5% and 1%. One-sided t-tests �0 : Σ = 0 versus �1 : Σ > 0 are conducted for the standard
deviations.
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of the random coefficients are significantly positive, which provide evidence of hetero-

geneous preferences for diet drinks among households. Columns (4)-(6) tell a different

story and imply the presence of price endogeneity. The intercepts and the coefficients of

price remain negative but become statistically insignificant. In fact, most coefficients in

columns (4) and (5) are insignificant. CDML in column (6) reveals a significantly positive

coefficient for the interaction term, suggesting that higher-income households may place

more value on health-related attributes when purchasing soft drinks.

Incorporating information on scientific knowledge and shopping preferences of house-

holds, Table 6.2 presents the results when !8 = !(28
8

. The estimates for the intercept and

the price effect in columns (1)-(3), ignoring the price endogeneity, closely resemble those

in columns (1)-(3) in Table 6.1. However, the coefficients for the diet dummy and the in-

teraction term become smaller in magnitude compared to the basic models. Particularly,

in columns (1) and (2), MLE and RMLE indicate no remaining unobserved heterogeneity

given the tiny estimates. In contrast, CDML in column (3) suggests the presence of unob-

served heterogeneity, as the estimated standard deviation is significantly positive. When

accounting for endogeneity, MLE in column (4) fails to detect unobserved heterogeneity.

Both RMLE in column (5) and CDML in column (6) detect the heterogeneity and report

larger price effects than MLE.

Finally, I compare the own- and cross-price elasticities for the top 1 and top 2 selling

brands in the year 2011, where the top 1 seller holds the largest market share among 21

alternatives and the top 2 seller follows. Tables 6.3 and 6.4 report the estimated price

elasticities for six models. According to columns (1)-(3) in both tables, I observe that

the magnitude of own-price elasticities generally increases after introducing additional

covariates, while the cross-price elasticities decreases. As an example, the cross-price

elasticity of the outside option with respect to the price of the top 1 brand declines from

0.090 to 0.056 in column (1). In columns (4)-(6), after controlling for endogeneity, the

magnitude of both elasticities increases as the dimension increases. In Table 6.3, the
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Table 6.2: Estimated Coefficients for Models Including Scientific Knowledge and
Shopping Preferences

MLE RMLE CDML MLE RMLE CDML
(1) (2) (3) (4) (5) (6)

Intercept 0.421*** 0.419 0.405*** -0.293 -0.001 -0.048
(0.094) (0.108) (0.416) (0.357) (0.358)

Price -25.758*** -25.743 -25.334*** -6.382 -11.708 -10.722
(2.782) (3.067) (14.784) (12.709) (12.716)

Diet -1.424*** -1.571 -1.164*** -1.252*** -1.387*** -1.359***
(0.259) (0.234) (0.140) (0.120) (0.120)

Diet × HH Income 0.043*** 0.025 0.025** 0.043 0.024 1.109
(0.016) (0.012) [0.235] (1.055)

RC.Diet 1.41E-09 0.001 0.640*** 5.83E-05 0.599 37.640
(0.224) (0.007) [0.219] (35.431)

N 4038
J 80
Dim 670 670 5 747 747 2
Neg LL -11915.79 -11990.01 6.71E-10 -10326.2 -11409.4 2.97E-05
Sparsity 661 663
2SLS x x x

Notes: Models in columns (1)-(3) assume that the prices of soft drinks are exogenous, while models in
columns (4)-(6) account for the price endogeneity. The intercept, the coefficients for the diet dummy and
price are directly estimated in column (1)-(3) and are recovered by two-stage least squares (2SLS) in columns
(4)-(6). The row RC.Diet represents the estimated standard deviation for the random coefficient of the diet
dummy. Standard errors of estimates are listed in parentheses (or in brackets if the estimated variance-
covariance matrix is singular). The standard errors of RMLE are infeasible except for those in Column (5)
that are derived from 2SLS. The asterisks *, ** and *** represent the significant level at 10%, 5% and 1%.
One-sided t-tests �0 : Σ = 0 versus �1 : Σ > 0 are conducted for the standard deviations.
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Table 6.3: Price Elasticities for Baseline Models

Elasticity MLE RMLE CDML MLE RMLE CDML
(1) (2) (3) (4) (5) (6)

Panel A: Own-Price Elasticities
Top1 -0.717 -0.732 -0.709 -0.164 -0.164 -0.160
Top2 -0.351 -0.362 -0.348 -0.087 -0.086 -0.085

Panel B: Cross-Price Elasticities
Outside-Top1 0.097 0.074 0.090 0.024 0.016 0.022
Outside-Top2 0.050 0.038 0.046 0.012 0.008 0.011
Top1-Top2 0.035 0.027 0.032 0.019 0.013 0.018
Top2-Top1 0.099 0.076 0.092 0.032 0.021 0.030

2SLS x x x

Notes: Models in columns (1)-(3) assume that the prices of soft drinks are exogenous, while models in
columns (4)-(6) account for the price endogeneity. Both own-price and cross-price elasticities are calculated
based on estimated parameters. In Panel A, Top1 and Top2 represent the best seller brand and the second-
best seller brand in the year 2011. In Panel B, A-B means the cross-price elasticity of alternative A with
respect to the alternative B.

estimates from MLE in column (4) and CDML in column (6) are quite similar. However,

in Table 6.4, the CDML estimates in column (6) are around 40% larger than the maximum

likelihood estimates in column (4), which are different from the regularized estimates in

column (5) as well. This underscores the importance of variable selection and debiasing

whenwe includes high-dimensional covariates in themodel, since failing to address these

issues can lead to incorrect substitution patterns.

7 Conclusion

In this paper, I propose a framework of estimation and inference for random-coefficient

logit models in the presence of high-dimensional individual-level covariates, bridging the

literature of high-dimensional inference and inference on the boundary. For estimation,
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Table 6.4: Price Elasticities for Baseline Models

Elasticity MLE RMLE CDML MLE RMLE CDML
(1) (2) (3) (4) (5) (6)

Panel A: Own-Price Elasticities
Top1 -0.727 -0.739 -0.733 -0.162 -0.309 -0.261
Top2 -0.358 -0.368 -0.366 -0.086 -0.162 -0.137

Panel B: Cross-Price Elasticities
Outside-Top1 0.083 0.065 0.056 0.021 0.028 0.036
Outside-Top2 0.043 0.033 0.029 0.010 0.014 0.018
Top1-Top2 0.030 0.023 0.020 0.016 0.025 0.033
Top2-Top1 0.084 0.066 0.057 0.027 0.041 0.059

2SLS x x x

Notes: Models in columns (1)-(3) assume that the prices of soft drinks are exogenous, while models in
columns (4)-(6) account for the price endogeneity. Both own-price and cross-price elasticities are calculated
based on estimated parameters. In Panel A, Top1 and Top2 represent the best seller brand and the second-
best seller brand in the year 2011. In Panel B, A-B means the cross-price elasticity of alternative A with
respect to the alternative B.
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I suggest an ;1-regularized maximum likelihood estimation (RMLE) approach to select

the high-dimensional covariates, which remains effective even in the presence of multi-

collinearity and endogeneity. To address the non-differentiability of ;1-penalty, I propose a

proximal gradient descent algorithm that accommodates box constraints. Under mild as-

sumptions, I derive non-asymptotic probability bounds for the estimation errors in RMLE,

indicating a slower convergence rate than the existing high-dimensional literature due to

the increasingnumber of alternatives. For inference, I implement aprocedure calledK-fold

cross-fitting, and construct a constrained debiased machine learning (CDML) estimator

based on the first-stage RMLE. I prove the root-= consistency for the CDML estimator and

derive its asymptotic distribution, which is multivariate Gaussian if there is no bound-

ary issue, and otherwise, is a projection of the multivariate Gaussian onto a polytope. I

also propose a quasi-likelihood ratio (QLR) test for hypothesis testings. The performance

of RMLE and CDML is illustrated in comprehensive Monte Carlo simulations. Finally,

using micro-level data provided by NielsonIQ, I apply these approaches to analyze the

soft-drink market in North Carolina.
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B Dataset Construction

In the 2011 Custom Survey, there are 80,205 household members. Within each household,
only one individual can be designated as the primary shopper. Given the likelihood
that household members share information and benefit from collective knowledge, for
questions related to knowledge (e.g., know-or-not questions), a household is treated as
“knowing” if at least one member answers “know”. As an example, consider a household
of three members. If two members answer that they “know” brand � of a headache
reliever, then the dummy :=>F.A4;84E4A.� is set to true. A continuing example is about
the ingredient of the reliever �. If one member chooses Aspirin and the other chooses
Ibuprofen, but the true answer is Aspirin, then the variable A4;84E4A.�.2>AA42C is equal
to 0.5. For attitude-related questions, I calculate the average responses across members
within each household. For all other questions, I pick the decision of the primary shopper.
Following this strategy, the survey data is reduced to 56,258 householdswith 404 variables.

There were 109,036 household members participating in the 2011 Ailment Survey.
Intuitively, households with more members experiencing ailments would likely have
higher demands for health-related products. To capture this, I count the number of
household members who reported ailments within a household for every ailment. After
generating dummyvariables for each ailment and aggregating the data at household-level,
I obtain a dataset consisting of 62,002 households and 1,203 variables.
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C K-fold Cross-validation

Choice of tuning parameter (i.e., the penalty �# ) is crucial to the regularized maximum
likelihood method. Larger penalty can better capture the sparsity of the true parameter,
however, introduce more regularization bias in the estimation. In the machine learn-
ing literature, the procedure called  -fold cross-validation is (K-CV) widely applied to
determine tuning parameters. I borrow the idea of K-CV and implement the following
procedure in my simulations and empirical application.
K-CV for Regularized Maximum Likelihood Estimation

1. For each C = 1, . . . , ), consider a random partition of ℐC := {1, . . . , =C} into  

different segments ℐ1,C , . . . ,ℐ ,C ;

2. Let )4BC: := ∪)
C=1ℐ:,C be the collection of the indices of individuals in all ) markets

for the segment : = 1, . . . ,  , and let )A08=: := ∪)
C=1ℐC\)4BC: be the indices of the

rest of individuals;

3. Let Λ := {�1, . . . ,�"} be a sequence of penalty parameters;

4. For each < = 1, . . . , " and : = 1, . . . ,  ,

(a) Solve the regularized likelihood estimator �̂'"!�
:,<

= �̂'"!�()A08=: ,�<) based
on the individuals indexed by the training set )A08=: and the penalty �< > 0;

(b) Calculate the unpenalized log-likelihood !#�)()4BC: , �̂'"!�
:,<

) based on the
individuals indexed by the testing set )4BC: and the estimator �̂'"!�

:,<
;

5. The searched optimal tuning parameter �>?C minimizes the loss, which is negative
testing log-likelihood,

�>?C = arg min
<=1,...,"

−
 ∑
:=1

!#�)()4BC: , �̂'"!�
:,<

)

Choice of Λ My choice of Λ is according to Lemma 1. Although the corollary indicates
�# = maxC �C

√
#−1 log 3� and �# ≥ 2#�# , the penalty �# could be overwhelming when-

ever the sample size # is not large enough. However, the rate #�# may be informative.
I consider 20 different penalties, which are constants multiplied by #�# , when I do the
 = 10 folds cross-validation:

Λ = (1, 2, 3, 4, 5, 6, 7, 8, 9) ⊗ (10−3, 10−2, 10−1) × #�#
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I only penalize the high-dimensional and potentially sparse parameterΠ, presuming that
the other parameters are known to be non-sparse and important.

Computation The K-CV procedure, solving �̂'"!�
:,<

for  × |Λ| times, is costly in compu-
tation, especially for mixed models because of the numerical integration. There are some
techniques in the LASSO literature such as least angle regression algorithm (Efron et al.,
2004) and cyclical coordinate descent algorithm (Friedman, Hastie and Tibshirani, 2010) that
can accelerate the solution of the whole regularization path. However, they may not work
well either because of the nonlinearity or the high cost of solving the gradient. Hopefully,
each penalty and fold can be solved independently so it is ideal to implement parallel
computing. I evaluated 10-fold CV for each case on a cluster with 72 cores and 216 giga-
bytes memory, and it took at most 7 hours to finish the whole procedure (4 combinations
of = and �) for one case.

Results Given datasets (one for each case) generated according to Table C.1, I implement
the K-CV procedure and display the testing log-likelihood for various =C and �C in Figure
C.1-C.2. The baseline models in C.1 imply that adding penalty is unnecessary for low-
dimensional models, although small penalty seems to be harmless and slightly improve
the out-of-sample prediction. In contrast, Figures C.2-C.2 demonstrate the importance of
penalizingmany parameters. Most curves have a U-shape with tight confidence intervals.
On one hand, when there is no (or small) penalty, the models with high-dimensional
parameters are likely to overfit the data. On the other hand, when there is too much
penalty, most parameters are zero so the models predict the same choice probability for
each product and consumer. The K-CV procedure should be ideally implemented for
every dataset generated in the simulation, but the computation is too costly. I summarize
the following Table C.1 for references. Since the log-likelihood curves are flat in the
neighborhood of the optimum, when I run the 500 Monte Carlo simulations,

1. in two baseline cases (the low-dimensional models), CDML nuisance estimates are
from MLE but not RMLE;

2. in the high-dimensional models (Case 1-4), we simply choose the 2∗ for RMLE (and
hence CDML) from Table C.1.

I also plot the paths of both penalized coefficientsΠ (solid lines) and unpenalized coef-
ficients �̄, �G , 
,Σ (dashed lines) in Figure C.4-C.5. The paths are expected: the penalized
coefficients shrink to zero as the penalty increases while the unpenalized coefficients vary
slightly anddonot shrink, except for the standarddeviation. The behaviors of the standard
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Table C.1: Optimal Penalty Multipliers from 10-fold CV

Cases Optimal Multipliers 2∗ in �# = 2∗#�#
3Π Σ =C = 100, �C = 3 =C = 100, �C = 5 =C = 200, �C = 3 =C = 200, �C = 5

Baseline 1 10 1 0.003 0.01 0.01 0.01
Baseline 2 10 0 0.01 0.01 0.02 0.008

1 200 1 0.05 0.03 0.05 0.03
2 200 0 0.03 0.02 0.04 0.03
3 400 1 0.05 0.03 0.04 0.03
4 400 0 0.03 0.02 0.05 0.03

deviation are interesting. In the baseline models whose dimensions are relatively low, the
standard deviations Σ can be estimated properly under zero or small penalty. In Case 1-4
whose dimensions are relatively high, the effect of random coefficients is dispersed when
the penalty is small and many non-zero coefficients, because the covariates -9C ⊗ !8 and
-9C � �8 share the same product characteristic -9C and the sample size is not enough to
unveil �>E(!8 , �8) = 0. When the penalty is moderate such that the sparsity is recovered,
the standard deviation can then be estimated properly. It is worth noting that, when the
penalty is too large, the estimation can be wrong again because all penalized coefficients
are forced to be zero and the standard deviation will be over-estimated (see the baseline
2, Case 2 and 4).
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Table D.1: Integral Approximation, Accuracy and Number of Drawn Nodes

Method 1-dim Approx. Nodes in 3-dim
Laplace

∫
4−(D(C)3C ≈ (2�)1/2 |�D′′(Ĉ)|−1/2 exp(−�D(Ĉ)) 1relative error: $(�−1)

Gauss-Hermite
∫
D(C)4−C23C ≈ ∑�

1=1 F1D(C1) �3exact up to (2� − 1)-th polynomials
Monte Carlo (MC)

∫
D(C)�(3C) ≈ �−1 ∑�

1=1 D(C1)with C1 ∼ 8.8.3. �(C) �
absolute error: $(�−1/2)

Quasi MC
∫
D(C)�(3C) ≈ �−1 ∑�

1=1 D(C1)with C1 := �−1(ℎ1) �absolute error: $(�−1 log �)
Notes: This table summarizes the approximation of integrals in a single dimension by different approaches
and the corresponding approximation errors in  ∈ N dimensions. In the Laplace approximation, Ĉ =
arg minC D(C) and D′′(·) is the second-order derivative of D(·), see Bilodeau et al. (2023). In Gauss-Hermite
quadrature, F1 = 21−11!

√
�1−2[�1−1(C1)]−2 where �1(C) is the physicist’s Hermite polynomial, see Liu and

Pierce (1994) for discussions. If �(D) is the integral and �̂(D) is the approximation, then the relative error
denotes |�(D)/�̂(D) − 1| and the absolute error denotes |�(D) − �̂(D)|.

D Numerical Integration

D.1 Gauss-Hermite Quadrature

Given the smoothness of the soft-max function, Gauss-Hermite quadrature can be imple-
mented to approximate the following integral with change of variable:

B8 9(�) :=
∫ ∞

−∞

exp($8 9(�, �))
1 +∑

9′ exp($8 9′(�, �))
1√
2�

exp(−�2/2)3�

where $8 9(�, �) = � 9 + (-9 ⊗ !8)′Π + (-9 � �)′Σ. Let < := �/
√

2, then

B8 9(�) =
∫ ∞

−∞

exp($8 9(
√

2<))
1 +∑

9′ exp($8 9′(
√

2<))
1√
�

exp(−<2)3< ≈ 1√
�

�∑
1=1

F1
exp($8 9(

√
2<1))

1 +∑
9′ exp($8 9′(

√
2<1))

which exactly corresponds to theGauss-HermiteQuadrature. The node<1 and theweight
<1 are given by the physicists’ version ofHermite polynomial. This approximation is exact
for (2� − 1)-th order of polynomials. As an example, when � = 5, we have

F1 = 0.0199, F2 = 0.3936, F3 = 0.9453, F4 = 0.3936, F5 = 0.0199

<1 = −2.020, <2 = −0.959, <3 = 0, <4 = 0.959, <5 = 2.020

which is exact for 9-th order of polynomials. Similarly,
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3

3�
B8 9(�) =

∫ ∞

−∞

�∑
:=1

#′:($8(�8 , �), 9)
(
&8: � �8
-8:

)
1√
2�

exp(−�2
8 /2)3�

≈ 1√
�

�∑
1=1

�∑
:=1

F1#
′
:($8(

√
2<1 , �), 9)

(
&8: �

√
2<1

-8:

)
32

3�3�′
B8 9(�) =

∫ ∞

−∞

�∑
:=1

�∑
;=1

#′′; ($8 , 9 , :)
(
(&8; � �8)(&8: � �8)′ (&8; � �8)-′8:

-8;(&8: � �8)′ -8;-
′
8:

)
≈ 1√

�

�∑
1=1

�∑
:=1

�∑
;=1

F1#
′′
; ($8(

√
2<1 , �), 9 , :)

(
(&8; �

√
2<1)(&8: �

√
2<1)′ (&8; �

√
2<1)-′8:

-8;(&8: �
√

2<1)′ -8;-
′
8:

)
where#′

:
($8 , 9) = # 9($8) (�[: = 9] − #:($8)) and#′′; ($8 , 9 , :) = #′

;
($8 , 9)�[: = 9]−#′

;
($8 , 9)#:($8)−

#′
;
($8 , :)# 9($8).

D.2 Quasi-Monte Carlo Integration

Train (2000, also see his references) discusses the random draws in mixed logit models
based on Halton sequences. These draws based on deterministic sequences can achieve
better symmetry and smaller variance15 in simulation errors, especially when the dimen-
sion is relatively large. It is better to under such Halton sequence in an example. AHalton
sequence for number 3 (must be a prime number) is constructed as follows:

• First, divide (0, 1) into 3 parts and get nodes 1/3, 2/3;

• Next, divide each parts into 3 parts and get nodes from each parts sequentially 1/9,
4/9, 7/9, 2/9, 5/9, 8/9;

• Next, divide each parts into 3 parts ...

Then the Halton sequence is

(ℎ1(3), ℎ2(3), ℎ3(3), . . . ) := (13 ,
2
3 ,

1
9 ,

4
9 ,

7
9 ,

2
9 ,

5
9 ,

8
9 , . . . )

and similar procedure can be done with other prime numbers. To draw a sequence of
random variables G1, . . . , G= from �(·) according to the Halton sequence {ℎ8(3)}=8=1, simply
let G8 := �−1(ℎ8(3)). To draw random vectors, just consider multiple Halton sequences
such as {(ℎ8(2), ℎ8(3), ℎ8(5), . . . )}=8=1.

15Train (2000) finds that the variance over draws in the simulated probability for an observation is half as
large with 100 Halton draws than 1,000 random draws.
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Train (1999) suggests the following steps to simulate the randompart�(1)
8
, . . . , �(�)

8
∈ R&

for 8 = 1, . . . , =:

1. Calculate a Halton sequence of length (�= + 10) using & prime numbers :1, . . . , :& :

(ℎ8)�=+10
8=1 := (ℎ8(:1), ℎ8(:2), . . . , ℎ8(:&))�=+10

8=1

where the first 10 entries are discarded to mitigate potential correlation;

2. For each 8 = 1, . . . , =, ; = 1, . . . , � and @ = 1, . . . , &, calculate

�̃(;)
8 ,@
= �−1(ℎ10+(8−1)�+;(:@))

where �−1 can be the inverse CDF of #(0, 1)

3. For each 8 = 1, . . . , = and ; = 1, . . . , �, calculate

(�(;)
8 ,1, . . . , �

(;)
8 ,&
) = Σ1/2(�̃(;)

8 ,1, . . . , �̃
(;)
8 ,&
)

Remark 1. Both cmmixlogit in STATA17 and the MATLAB code by Train (2006) use low-
discrepancy sequences such as Halton sequences and Hammersley sets.
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E Proof of Main Results

E.1 Proof of Lemma 1

Recall that
3

3�
!=�(�0) =

=∑
8=1

�∑
9=0

.8 9
1

B8 9(�0)
3

3�
B8 9(�0)

where B8 9(�0) =
∫
# 9($8(�0))Φ(3�8), and Φ(·) is the CDF of the multivariate normal distri-

bution #(0, �3�). Given that
∑�

9=0.8 9 = 1 and the assumption min9 B8 9(�0) ≥ �� �−1 > 0,

3

3�
!=�(�0) ≤ �−1

� �

=∑
8=1

max
9

3

3�
B8 9(�0)

where the inequality here is element-wise. It suffices to derive the rate on 3
3� B8 9(�0). Later,

we will show that for any 8 and 9,���� 33� B8 9(�0)
���� ≤ 2�30C0 �′3� almost surely (E.1)

where �3� is a vector of ones with length 3�. Now letW8 :=
∑�

9=0.8 9B8 9(�0)−1 3
3� B8 9(�0) so

3
3�!=�(�0) =

∑=
8=1W8 . By Assumption 1,W8 is i.i.d. across 8 = 1, . . . , =. By the union

bound of probability

P

(




 =∑
8=1
W8







∞

≥ �=

)
= P

(
3�⋃
:=1

����� =∑
8=1
W8:

����� ≥ �=

)
≤

3�∑
:=1
P

(����� =∑
8=1
W8:

����� ≥ �=

)
≤ 3� max

:
P

(����� =∑
8=1
W8:

����� ≥ �=

)
We will derive the bound by using the McDiarmid’s inequality (see Lemma 5 in

Appendix). Let Z := 5 (W1, . . . ,W=) :=
∑=
8=1W8 so E[Z] = 0 ∈ R3� by Assumption 1.

Without loss of generality, consider the first coordinate : = 1 so we can temporarily drop
the subscript :. Now we verify the critical block, which is called the bounded difference
property:

sup
F1 ,...F= ,F8′

| 5 (F1, . . . , F=) − 5 (F1, . . . , F8−1, F8′ , F8+1, . . . , F=)| ≤ 28 , 1 ≤ 8 ≤ =

for someconstants 21, . . . , 2= ≥ 0. Inourdesign, 21, . . . , 2= = 4(�+1)max{�30C0 , �30C0
√

2/�}
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because,

| 5 (F1, . . . , F=) − 5 (F1, . . . , F8−1, F8′ , F8+1, . . . , F=)|

=

�∑
9=0

H8 9B8 9(�0)−1 3

3�1
B8 9(�0) −

�∑
9=0

H8′ 9B8′ 9(�0)−1 3

3�1
B8′ 9(�0)

≤ 2 max
8
B8 9(�0)−1 ×max

8

������
�∑
9=0

H8 9
3

3�1
B8 9(�0)

������
≤ 4�−1

� ��30C0

where the first inequality comes from the triangle inequality, and the second inequality
comes from Assumption 3 and Eq.(E.1). Let � := 4�−1

�
�30C0 . Note that the bounded

difference property holds for all :. As a result, by the McDiarmid’s inequality,

P (|Z: − E[Z:]| > 2) = P
(����� =∑
8=1
W8:

����� > 2

)
≤ 2 exp

(
− 222

=�2�2

)
and hence

P

(
�−1
=





 1
=

3

3�
!=�(�0)






∞
≥ 2

)
≤ 2 exp

(
−

2=2�2
=2

2

=�2�2 + log 3�
)

Let �= = �
√
=−1 log 3�, then the right-hand side 2 exp((1−222/�2) log 3�) can be arbitrarily

small (as 3� →∞)whenever 2 > �. Therefore, we conclude that



 1
=

3

3�
!=�(�0)






∞
= $% (�=) = $%

(
�

√
=−1 log 3�

)
Finally, we show Eq.(E.1). To save notation, we write #8 9 := # 9($8(�0)) without confu-

sions. By the chain rule and the exchangeability,

3

3�
B8 9(�0) =

∫
3

3�
#8 9Φ(3�8) =

∫ �∑
:=1

%#8 9

%$8:

3$8:
3�

Φ(3�8)

By the property of soft-max function,
∑�

9=0 #8 9 = 1 and

�∑
:=1

%#8 9

%$8:
=

�∑
:=1

(
�[: = 9] − #8 9

)
#8: = #8 9 −

�∑
:=1

#8 9#8: = #8 9(1 − #80) ∈ [0,#8 9]
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for all �8 . Note that $8: = -′8:� + (&8: � �8)′� and -8: is independent of �8 , similarly∫ �∑
:=1

%#8 9

%$8:

3$8:
3�

Φ(3�8) =
∫

#8 9-8 9−
�∑
:=1

#8 9#8:-8:Φ(3�8) = -8 9B8 9(�0)−
�∑
:=1

-8:

∫
#8 9#8:Φ(3�8)

For the first term, each coordinate |-8 9;B8 9(�0)| ≤ �30C0 is bounded almost surely given the
assumption |-8 9; | ≤ �30C0 almost surely. For the second term, notice that #8 9 ∈ [0, 1] and∑�

9=1 #8 9 = 1 − #80 ≤ 1 for all �8 , so

�∑
:=1

-8:

∫
#8 9#8:Φ(3�8) ≥ −�30C0

∫
#8 9(1 − #80)Φ(3�8) ≥ −�30C0

Thus, �����∫ �∑
:=1

%#8 9

%$8:

3$8:
3�

Φ(3�8)
����� ≤ 2�30C0 �3-

where �3- is a vector of ones with length 3- . It is slightly different for the derivative with
respect to �:∫ �∑

:=1

%#8 9

%$8:

3$8:
3�

Φ(3�8) =
∫

#8 9&8 9 � �8Φ(3�8) −
�∑
:=1

∫
#8 9#8:&8: � �8Φ(3�8)

For the first term, since &8 9 is independent of �8 , we can factor &8 9 out and rewrite it as
&8 9 �

∫
#8 9�8Φ(3�8). Since #8 9 ∈ [0, 1], then for ; = 1, . . . , 3& ,∫

#8 9&8 9;�8;Φ(3�8;) =
∫
�8;≤0

#8 9&8 9;�8;Φ(3�8;) +
∫
�8;≥0

#8 9&8 9;�8;Φ(3�8;)

≤2
∫
�8;≥0

&8 9;�8;Φ(3�8;) = �30C0
√

2
�

where the last equality is from the mean of half-normal distribution16and the assumption

16If . = |- | and |- | ∼ #(0, �2), then . follows a half-normal distribution with the density function

5 (H) =
√

2
�
√
�

exp
(
− H

2

2�2

)
, H ≥ 0

and mean E[.] = �
√

2√
�
. In our case, � = 1 and

∫
�8;≥0 �8;Φ(3�8;) =

1
2E[.] = 1/

√
2�.
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that |&8 9; | ≤ �30C0 almost surely. For the second term, we do similar decomposition∫
#8 9#8:&8;�8;Φ(3�8;) =

∫
�8;≤0

#8 9#8:&8;�8;Φ(3�8;) +
∫
�8;≥0

#8 9#8:&8;�8;Φ(3�8;)

and then ∫
#8 9#8:&8;�8;Φ(3�8;) ≥ 2�30C0

∫
�8;≤0

#8 9#8:�8;Φ(3�8;)

Again, as
∑�

:=1 #8: = 1 − #80 and #8 9 ∈ [0, 1],

�∑
:=1

∫
#8 9#8:&8;�8;Φ(3�8;) ≥ 2�30C0

∫
�8;≤0

#8 9(1 − #80)�8;Φ(3�8;) ≥ −�30C0
√

2
�

Therefore, ∫ �∑
:=1

%#8 9

%$8:

3$8:
3�

Φ(3�8) ≤ 2�30C0

√
2
�
�3&

Combine with the previous bound and the proof is finished.

E.2 Proof of Theorem 1

We first verify the conditions for Theorem 1 in Negahban et al. (2012). Their condition
(G1) is naturally satisfied with LASSO penalty and �! = 0 as a result. Their condition (G2)
also holds: !=�(�) is a smooth function of � and we assume conditions in Assumption 2.
Since the dual norm of ;1-norm ‖ · ‖1 is the ;∞-norm, ℛ∗(∇!=�(�0)) is exactly ‖ 33�!=�(�0)‖∞,
and Lemma 1 shows the rate to be =�= .

Now we go through their proof of Theorem 1 in the supplementary material. Define

ℱ (Δ) := !=�(�0 + Δ) − !=�(�0) + �=(‖�0 + Δ‖1 − ‖�0‖)

which is the difference between the penalized likelihood at �0+Δ and �0. The authors first
proves their Lemma 3: if �= ≥ 2ℛ∗(∇!=�(�0)) and !=� is convex, then !=�(�0 +Δ) − !=�(�0) ≥
−�=2 (‖Δ(‖1 + ‖Δ(2 ‖1). The proof is standard and the same when we consider a random
design and sufficiently assume !=�(�) is convex in a neighborhood of �0 which contains
�0 + Δ (especially �̂'"!�). The statement now becomes: on the event ℰ(�=) := {�= ≥
2ℛ∗(∇!=�(�0))} (with probability greater than 1 − 0=), we have the inequality holds.

Since ‖ · ‖1 is convex everywhere and !=�(·) is convex at �0 + CΔ for all C ∈ (0, 1), ℱ (·) is
also convex at CΔ. Such convexity can be used to prove their Lemma 4: if ℱ (Δ) > 0 for all
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Δ ∈ C ∩ {‖Δ‖ = �}, then ‖Δ̂‖ = ‖�̂'"!� − �0‖ ≤ �. A contrapositive statement is proved:
if there exists Δ̂ such that ‖Δ̂‖ > �, then there is some Δ̃ ∈ C ∩ {‖Δ‖ = �} such that ℱ (Δ̃) ≤ 0.
Since ‖Δ̂‖ > � and C is a cone, then there must be some C∗ ∈ (0, 1) such that ‖C∗Δ̂‖ = � on
the line joining Δ̂ and 0. By Jensen’s inequality and ℱ (0) = 0,

ℱ (C∗Δ̂ + (1 − C∗)0) ≤ C∗ℱ (Δ̂) + (1 − C∗)ℱ (0) = C∗ℱ (Δ̂) ≤ 0

The last inequality comes from the fact that �̂'"!� is the minimum point so ℱ (Δ̂) ≤ 0.
Then, simply define Δ̃ = C∗Δ̂ suggesting ℱ (Δ̃) ≤ 0 and hence the Lemma 4 is proved.

The rest of the proof is then straightforward. By (G1) and (G2), with probability greater
than 1 − 0= ,

ℱ (Δ) ≥
(
3

3�
!=�(�0)

)′
Δ + =�!‖Δ‖22 + �=(‖�0 + Δ‖1 − ‖�0‖1)

for all Δ ∈ C. Using the Hölder’s inequality, with probability greater than 1 − 1= ,����( 33�!=�(�0)
)′
Δ

���� ≤ 



 33�!=�(�0)





∞
‖Δ‖1 ≤

1
2�= ‖Δ‖1

for �= ≥ 2=�= . Then, with probability greater than 1 − 0= − 1= ,

ℱ (Δ) ≥ =�!‖Δ‖22 + �=(‖�0 + Δ‖1 − ‖�0‖1) −
1
2�= ‖Δ‖1

Some algebra shows that ‖�0 +Δ‖1 − ‖�0‖ ≥ ‖Δ(2 ‖1 − ‖Δ(‖1 − 2‖�0,(2 ‖1 = ‖Δ(2 ‖1 − ‖Δ(‖1.
Plug in this inequality and we obtain

ℱ (Δ) ≥ =�!‖Δ‖22 −
3
2�= ‖Δ(‖1 ≥ =�!‖Δ‖

2
2 −

3
2�=
√
B= ‖Δ‖2

According to the Lemma 4, strictly positive right-hand side implies ‖Δ̂‖2 ≤ �, which is
true as long as ‖Δ‖2 ≥ 3

√
B=�=

2=�! as �! > 0. Thus, we can let � = 3
√
B=�=
=�!

, which generate the
first error bound in our lemma. The second error bound is then by the Hölder’s inequality
‖Δ̂‖1 ≤

√
B= ‖Δ̂‖2.
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E.3 Proof of Corollary 1

The proof is almost the same except that we need to derive the concentration inequality
for ‖#−1 3

3�!#�)(�0)‖∞. Again, by the definition,

3

3�
!#�)(�0) =

)∑
C=1

∑
8∈ℐC

∑
9∈JC

.8 9C
1

B8 9C(�0)
3

3�
B8 9C(�0)

Given that
∑
9∈JC .8 9C = 1 and min9∈JC B8 9C(�0) ≥ �� �−1

C > 0 from Assumption 4,∑
9∈JC

.8 9C
1

B8 9C(�0)
3

3�
B8 9C(�0) ≤ �−1

� �
−1
C max

9∈JC

3

3�
B8 9C(�0)

where the inequality here is element-wise, and hence

3

3�
!#�)(�0) ≤

)∑
C=1

∑
8∈ℐC

�−1
� �
−1
C max

9∈JC

3

3�
B8 9C(�0)

It suffices to derive the bound on 3
3� B8 9C(�0) for each 8 , 9 , C. Consider � = (�′, �>

′
, �D

′)′ for
generality. Some algebra shows that

3

3�
B8 9C(�0) =

∫ �∑
:=1

%#8 9

%$8:

3$8:
3�

Φ(3�8) where 3$8:
3�

=
©­­«

4:

-9C ⊗ !8
-9C � �8

ª®®¬
Here 4: = (0, . . . , 0, 1, 0, . . . , 0)′ is a vector of length � whose :-th entry is equal to one

and the others are all zero. By Assumption 4, -9C and !8 are all bounded random vectors.
Therefore, we can prove in the exact same way as Lemma 1 and show that for any 8 , 9 , C,���� 33� B8 9C(�0)

���� ≤ 2
(
�′3� , �

2
30C0

�′3-3! , �30C0 �
′
3-

)′
almost surely

Let W8C := �−1
�
�−1
C max9∈JC

3

3�
B8 9C(�0) and W8C ,: be the :-the entry. The union bound

inequality implies

P
©­«





 )∑
C=1

∑
8∈ℐC
W8C







∞

≥ �#
ª®¬ ≤ 3� max

:
P

(����� =∑
8=1
W8C ,:

����� ≥ �#

)
for �# > 0
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The bounded difference property is satisfied with constant

� := 4�−1
� ×max

C
�C ×max{1, �2

30C0
, �30C0}

By the McDiarmid’s inequality again, for any 2 > 0 and �# > 0,

P

(
�−1
#





 1
#

3

3�
!#�)(�0)






∞
≥ 2

)
≤ 2 exp

(
−

2#2�2
#
22

#(maxC �C)2�2 + log 3�

)
and hence, 



 1

#

3

3�
!#�)(�0)






∞
= $%

(
max
C
�C

√
#−1 log 3�

)
The error bounds for the regularized estimator are direct results from Lemma 1.

E.4 Proof of Theorem 2

For clarity, the proof is separated into eight steps. The outline is given in Step 1 where
we assume all rates are known. In Step 2-3, we derive the rate for "#� (�0; �̂, �̂) −
"#� (�0;�0, �0) by using empirical process notations and the cross-fitting technique. In
Step 4-5, we derive the rate for ��′"#� (�0; �̂, �̂) − ��′"#� (�0;�0, �0) which does not
rely on the cross-fitting. In Step 6, we derive the rate for �2

�"#�,;(�0). Step 7 is the central
limit theorem for #1/2"#� (�0;�#0, �#0) and Step 8 is the weak law of large numbers for
��′"#� (�0;�0, �0), proved by Hoeffding’s inequality.

Step 1 By the definition in Eq.(4.1),

"#� (�0; �̂, �̂) −"#� (�0;�0, �0) =
1
 

 ∑
:=1

1
#/ 

∑
8∈ℐ:

<8(�0; �̂: , �̂:) − <8(�0;�0, �0)

=
1
 

 ∑
:=1

1
#/ 

(
%

%�′
!
(:)
#�
(�0; �̂:) −

%

%�′
!
(:)
#�
(�0;�0)

+ �0
%

%�′
!
(:)
#�
(�0;�0) − �̂:

%

%�′
!
(:)
#�
(�0; �̂:)

)
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��′"#� (�0; �̂, �̂) − ��′"#� (�0;�0, �0) =
1
 

 ∑
:=1

1
#/ 

∑
8∈ℐ:

%

%�′
<8(�0; �̂: , �̂:) −

%

%�′
<8(�0;�0, �0)

=
1
 

 ∑
:=1

1
#/ 

(
%2

%�%�′
!
(:)
#�
(�0; �̂:) −

%2

%�%�′
!
(:)
#�
(�0;�0)

+ �0
%2

%�%�′
!
(:)
#�
(�0;�0) − �̂:

%

%�%�′
!
(:)
#�
(�0; �̂:)

)
and

�2
�"#�,9(�0) =

1
 

 ∑
:=1

1
#/ 

∑
8∈ℐ:

%2

%�%�′
<8 9(�0;�0, �0)

=
1
 

 ∑
:=1

1
#/ 

%2

%�%�′
%

%�9
!
(:)
#�
(�0;�0) −

%2

%�%�′
�0, 9

%

%�′
!
(:)
#�
(�0;�0)

Taking the advantage of cross-fitting, we consider the decomposition in Chernozhukov et
al. (2018, C55) and use our Lemma 6.

We first derive the rate for
√
# ‖"#� (�0; �̂, �̂) − "#� (�0;�0, �0)‖2. Let P=,: be the

empirical measure over the subsamples indexed by ℐ: . Thus,

"#� (�0; �̂, �̂) −"#� (�0;�0, �0) =
1
 

 ∑
:=1
P=,: (<8(�0; �̂: , �̂:) − <8(�0;�0, �0))

Also define the empirical process as follows: let ,: = {.8 9 , -8 9 , &8 9 : 8 ∈ ℐ: , 9 ∈ J}
and ,−: = {.8 9 , -8 9 , &8 9 : 8 ∈ ℐ−: , 9 ∈ J} (or ,: = {.8 9 , -9 , !8 9 , & 9 : 8 ∈ ℐ: , 9 ∈ J} and
,−: = {.8 9 , -9 , !8 9 , & 9 : 8 ∈ ℐ−: , 9 ∈ J} in the BLP setting).

G=,:<8 =
√
#/ (P=,:<8 − E [<8 | ,−:])

Then, P=,: (<8(�0; �̂: , �̂:) − <8(�0;�0, �0)) = (#/ )−1/2(�1,: + �2,:)where

�1,: := G=,: (<8(�0; �̂: , �̂:) − <8(�0;�0, �0))
�2,: :=

√
#/ (E [<8(�0; �̂: , �̂:) | ,−:] − E [<8(�0;�0, �0)])

Later, in Step 2, we will show that

‖�1,: ‖2 = $%(�2(1 + B�)A#,� + �A#,�)
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In Step 3, we will show that

‖�2,: ‖2 =
√
#/ $%(�3(1 + B�)A2

#,� + �
2A#,�A#,�)

As  ∈ N is finite and fixed, combine these two rates and we obtain
√
# ‖"#� (�0; �̂, �̂)−"#� (�0;�0, �0)‖2 = ‖�1,: ‖2 + ‖�2,: ‖2

= $%

(
�2(1 + B�)A#,� + �A#,� +

√
#�3(1 + B�)A2

#,� +
√
#�2A#,�A#,�

)
Next, we derive the rate for ‖��′"#� (�0; �̂, �̂) − ��′"#� (�0;�0, �0)‖�. This part is

relatively simple to prove regardless of cross-fitting technique. Let

�3,: := %2

%�%�′
!
(:)
#�
(�0; �̂:)−

%2

%�%�′
!
(:)
#�
(�0;�0) and �4,: := �0

%2

%�%�′
!
(:)
#�
(�0;�0)−�̂:

%

%�%�′
!
(:)
#�
(�0; �̂:)

In the following Step 4, we will prove that

1
#/ ‖�3,: ‖� = $%

(
�3A#,�

)
and finally in Step 5,

1
#/ ‖�4,: ‖� = $%

(
B��

3A#,� + �2A#,� + �3A#,�A#,�
)

and therefore,

‖��′"#� (�0; �̂, �̂) − ��′"#� (�0;�0, �0)‖� = $%

(
(1 + B�)�3A#,� + �2A#,� + �3A#,�A#,�

)
Finally, we derive the rate of �2

�"#�,9(�0) in Step 6, which is shown as $%((1 + B�)�3).
As a result, to have

√
# ‖"#� (�0; �̂, �̂) −"#� (�0;�0, �0)‖2 = >%(1), we need

�2(1+B�)A#,� = >%(1), �A#,� = >%(1),
√
#�3(1+B�)A2

#,� = >%(1) and
√
#�2A#,�A#,� = >%(1)

To have ‖��′"#� (�0; �̂, �̂) − ��′"#� (�0;�0, �0)‖� = >%(1), we need

(1 + B�)�3A#,� = >%(1), �2A#,� = >%(1) and �3A#,�A#,� = >%(1)
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To have �2
�"#�,9(�0) = >%(#1/2), we need

#−1/2(1 + B�)�3 = >%(1)

In Step 7 and 8, we will prove that

√
#"#� (�0;�0, �0) →3 " := #(0,Σ") and ��′"#� (�0;�0,�0)→? Ω"

Remark 2. Intuitively, we can also do the following decomposition for "#� (�0; �̂, �̂) −
"#� (�0;�0, �0): for each : = 1, . . . ,  , let

�1,: := %

%�′
!
(:)
#�
(�0; �̂:) −

%

%�′
!
(:)
#�
(�0;�0)

�2,: := �0
%

%�′
!
(:)
#�
(�0;�0) − �̂:

%

%�′
!
(:)
#�
(�0; �̂:)

By the triangle inequality of the ;2-norm and the Frobenius norm,

‖"#� (�0; �̂, �̂) −"#� (�0;�0, �0)‖2 ≤
1
 

 ∑
:=1

1
#/ (‖�1,: ‖2 + ‖�2,: ‖2)

so it suffices to derive bounds for �1,: and �2,: , e.g., using Taylor’s expansion at � = �0.
However, it is necessary to have �1,: ∨ �2,: = >%(#−1/2) which is very strong. The proof
could be quite difficult because such decomposition may not use the fact that �1,: − �2,: is
the different of score functions whose mean will concentrate at zero.

Step 2 We derive the rate of ‖�1,: ‖2 in this part. According to Lemma 6,

E[‖�1,: ‖22 | ,−:] ≤ E[‖<8(�0; �̂: , �̂:) − <8(�0;�0, �0)‖22 | ,−:]
≤ sup

�∈)�
#
,�∈)�

#

E[‖<8(�0;�, �) − <8(�0;�0, �0)‖22 | ,−:]

= sup
�∈)�

#
,�∈)�

#

E[‖<8(�0;�, �) − <8(�0;�0, �0)‖22]

Also, by the Lemma 6.1 in Chernozhukov et al. (2018), E[‖�1,: ‖22 | ,−:] ≤ A2
1,: implies

‖�1,: ‖2 = $%(A1,:). Thus, it suffices to provide the rate of ‖<8(�0;�, �) − <8(�0;�0, �0)‖2.
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By the definition of the log-likelihood function,

<8(�0;�, �) − <8(�0;�0, �0) =
�∑
9=0

.8 9

(
%

%�′
ln B8 9(�0, �) − �

%

%�′
ln B8 9(�0, �)

− %

%�′
ln B8 9(�0, �0) + �0

%

%�′
ln B8 9(�0, �0)

)
which is a 3�-by-1 vector. To avoid of the tensor notation, we consider its ;-th coordinate
without loss of generality. Let

�1,:,; := %

%�;
ln B8 9(�0, �) −

%

%�;
ln B8 9(�0, �0)

�2,:,; := �0,;
%

%�′
ln B8 9(�0, �0) − �;

%

%�′
ln B8 9(�0, �)

We first derive the rate for �1,:,; . Consider the Taylor’s expansion of %
%�;

ln B8 9(�0, �)
(which is at least two-times continuously differentiable everywhere) at � = �0:

%

%�;
ln B8 9(�0, �) =

%

%�;
ln B8 9(�0, �0) + (� − �0)′

%2

%�′%�;
ln B8 9(�0, �0) + >(‖� − �0‖2)

where the remainder is by the Taylor’s approximation theorem. According to Lemma 3,
the second term on the right-hand side is bounded almost surely, then by the triangle
inequality,



 %2

%�′%�;
ln B8 9(�0, �0)






∞
= max

9
B−2
8 9 (�0, �0)





 %

%�′
B8 9(�0, �0)






∞
+max

9
B−1
8 9 (�0, �0)





 %

%�′
%

%�;
B8 9(�0, �0)






∞

where the first term is bounded by 2�−2
�
�2��0C0 and the second term is bounded by

6�−1
�
��2

�0C0
. Thus, with probability one,



 %2

%�′%�;
ln B8 9(�0, �0)






∞
≤ 2�−2

� �
2��0C0 + 6�−1

� ��
2
�0C0 = $(�

2)

which is also true for %2/%�%�′. Then, by the Hölder’s inequality, almost surely we have

|�1,:,; | =
���� %

%�;
ln B8 9(�0, �) −

%

%�;
ln B8 9(�0, �0)

���� ≤ ‖� − �0‖1 ×




 %2

%�′%�;
ln B8 9(�0, �0)






∞
+ >(‖� − �0‖2)

= $
(
�2‖� − �0‖1

)
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It is worth noting that this rate holds for not only all ;’s but also

%

%�′
ln B8 9(�0, �) −

%

%�′
ln B8 9(�0, �0)

Next, we derive the rate for �2,:,; . Notice that17

�2,:,; = �0,;
%

%�′
ln B8 9(�0, �0) − �;

%

%�′
ln B8 9(�0, �) = �0,;

(
%

%�′
ln B8 9(�0, �0) −

%

%�′
ln B8 9(�0, �)

)
+ (�0,; − �;)

(
%

%�′
ln B8 9(�0, �) −

%

%�′
ln B8 9(�0, �0)

)
+ (�0 − �;)

%

%�′
ln B8 9(�0, �0)

By the triangle inequality, the Hölder’s inequality and the sub-multiplicativity of Frobe-
nius norm,

|�2,:,; | ≤ ‖�0,; ‖1 ×




 %

%�′
ln B8 9(�0, �0) −

%

%�′
ln B8 9(�0, �)






∞

+ ‖�0,; − �; ‖1 ×




 %

%�′
ln B8 9(�0, �0) −

%

%�′
ln B8 9(�0, �)






∞

+ ‖�0,; − �; ‖1 ×




 %

%�′
ln B8 9(�0, �0)






∞

Recall that we just proved



 %

%�′
ln B8 9(�0, �0) −

%

%�′
ln B8 9(�0, �)






∞
= $

(
�2‖� − �0‖1

)
almost surely. In addition, by Lemma 3 again, for any ; = 1, . . . , 3�,���� %%�; ln B8 9(�0, �0)

���� ≤ max
9
B−1
8 9 (�0, �0) ×

���� %%�; B8 9(�0, �0)
���� ≤ 2�−1

� ���0C0 = $(�)

almost surely, so

|�2,:,; | ≤ $
(
�2(‖�0,; ‖1 + ‖�0,; − �; ‖1)‖� − �0‖1 + �‖�0,; − �; ‖1

)
17We use the fact that �� − �� = �(� − �) + (� − �)(� − �) + (� − �)�.
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Therefore, with probability one,

‖<8(�0;�, �) − <8(�0;�0, �0)‖2 ≤ $
(
�2(1 + ‖�0‖1 + ‖�0 − �‖1)‖� − �0‖1 + �‖�0 − �‖1

)
where ‖�0‖1 =

∑3�

;=1 ‖�0,; ‖1. Given the definition of )�
#
and )�

#
and that �0 is sparse, we

know ‖�0‖1 = $(B�), ‖� − �0‖1 ≤ A#,� and ‖� − �0‖1 ≤ A#,�, so

‖�1,: ‖2 = $%(�2(1 + B�)A#,� + �A#,�)

Step 3 We derive the rate of ‖�2,: ‖2 in this part. Let

5:(A) := E [<8(�0;�0 + A(�̂: − �0), �0 + A(�̂: − �0)) | ,−:] − E [<8(�0;�0, �0)] , A ∈ [0, 1]

so �2,: =
√
#/ 5:(1) and 5:(1) = 5:(0) + 5 ′:(0) + 5

′′
:
(A)/2 for some Ã ∈ (0, 1) by the Taylor’s

expansion. Here 5:(0) = 0 because the score has zero expectation, and 5 ′
:
(0) = 0 because

of the Neyman orthogonality. The third term

5 ′′: (A) = E
[∑

9

.8 9
%2

%A2

(
%

%�′
ln B8 9(�0, �0 + A(�̂: − �0))

− (�0 + A(�̂: − �0))
%

%�′
ln B8 9(�0, �0 + A(�̂: − �0))

)
| ,−:

]
Since �̂: and �̂: are known conditioning on ,−: , we temporarily use � and � without
ambiguity. To avoid the tensor notation, consider a single ; = 1, . . . , 3� and let B̂8 9 :=
B8 9(�0, �0 + A(� − �0)) to save notations:

%2

%A2
%

%�;
ln B̂8 9 = 2B̂−3

8 9

(
%

%�
B̂8 9 · (� − �0)

)2
%

%�;
B̂8 9 − B̂−2

8 9 (� − �0)′
(

%2

%�%�′
B̂8 9

)
(� − �0)

%

%�;
B̂8 9

− B̂−2
8 9

(
%

%�
B̂8 9

)
(� − �0)

(
%2

%�%�;
B̂8 9

)
(� − �0) + B̂−1

8 9 (� − �0)′
%3

%�%�′%�;
B̂8 9(� − �0)

By Assumption 7, B̂−1
8 9
≤ �−1

�
� for all � ∈ )�

#
and 9. In addition, the first-, second- and the

third-order partial derivatives are all bounded18 almost surely for all ; = 1, . . . , 3�, then

18In fact, for all %
%� B8 9(·),

%2

%�%�′ B8 9(·) and
%3

%�:%�;%�<
B8 9(·) because the covariates all have finite supports, see

our Lemma 3.
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for every ; = 1, . . . , 3�,

%2

%A2
%

%�;
ln B̂8 9 = $(�3‖� − �0‖22), 0.B.

This rate also holds for %2

%A2
%
%�;

ln B̂8 9 for similar reasons. It is the same logic to derive the
other term. Let �̃:,; = �0,; + A(�; − �0,;), then

%2

%A2 �̃:,;
%

%�′
ln B̂8 9 = 2(�; − �0,;)

%2

%A%�′
ln B̂8 9 + �̃:,;

%2

%A2
%

%�
ln B̂8 9

where, with probability one,

%2

%A%�′
ln B̂8 9 = −B̂2

8 9

(
%B̂8 9

%�

)
(� − �0)

%B̂8 9

%�
+ B̂−1

8 9

(
%2

%�%�′
B̂8 9

)
(� − �0) = $(�2‖� − �0‖1)�����̃:,; %2

%A2
%

%�
ln B̂8 9

���� ≤ ‖�̃:,; ‖1 × 



 %2

%A2
%

%�
ln B̂8 9






∞
= $(�3‖�̃:,; ‖1‖� − �0‖22)

Therefore, for every ; = 1, . . . , 3�,

E

[
%2

%A2
%

%�;
ln B̂8 9 −

%2

%A2 �̃:,;
%

%�′
ln B̂8 9

]
= $

(
�3 (1 + ‖�̃:,; ‖1) ‖� − �0‖22 + �2‖� − �0,; ‖1‖� − �0‖1

)
and hence,

�2,: ≤
√
#/ sup

A∈(0,1),�∈)�
#
,�∈)�

#

E

{ �∑
9=0

.8 9

(
%2

%A2
%

%�
ln B8 9(�0, �0 + A(� − �0))

− (�0 + A(� − �0))
%2

%A2
%

%�
ln B8 9(�0, �0 + A(� − �0))

)}
≤

√
#/ sup

A∈(0,1),�∈)�
#
,�∈)�

#

$
(
�3 (1 + ‖�0‖1 + A‖� − �0‖1) ‖� − �0‖22 + �2‖� − �0‖1‖� − �0‖1

)
The inequality is element-wise. Since )�

#
= {� : ‖� − �0‖1 ∨ ‖� − �0‖2 ≤ A#,�} and

)
�
#
= {� : ‖� − �0‖1 ≤ A#,�} with A#,� , A#,�→ 0, then

�2,: =
√
#/ × $%(�3(1 + B�)A2

#,� + �
2A#,�A#,�)
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Step 4 In this part, we derive the bound on �3,: . Since

�3,: =
%2

%�%�′
!
(:)
#�
(�0; �̂:) −

%2

%�%�′
!
(:)
#�
(�0;�0) =

∑
8∈ℐ:

�∑
9=0

.8 9

(
%2

%�%�′
ln B8 9(�0, �̂:) −

%2

%�%�′
ln B8 9(�0, �0)

)
and � has fixed dimensions, without loss of generality, consider an entry of the matrix.
For each ; , < = 1, . . . , 3�, consider the Taylor’s expansion of %2

%�;%�<
ln B8 9(�0, �) at � = �0:

%2

%�;%�<
ln B8 9(�0, �) =

%2

%�;%�<
ln B8 9(�0, �0)+(�−�0)′

%

%�′
%2

%�;%�<
ln B8 9(�0, �0)+ >(‖�−�0‖2)

Thus, it is sufficient to study the third-order partial derivatives. According to Lemma 3,

%

%�′
%2

%�;%�<
ln B8 9(�0, �) = 2B−3

8 9 (�0, �)
%B8 9(�0, �)

%�′
%B8 9(�0, �)

%�;

%B8 9(�0, �)
%�<

− B−2
8 9 (�0, �) ×

(
%2B8 9(�0, �)
%�′%�;

%B8 9(�0, �)
%�<

+
%2B8 9(�0, �)
%�′%�<

%B8 9(�0, �)
%�;

+
%2B8 9(�0, �)
%�<%�;

%B8 9(�0, �)
%�′

)
+ B−1

8 9 (�0, �)
%3B8 9(�0, �)
%�′%�;%�<

and all the partial derivatives are bounded almost surely: for any ; , < = 1, . . . , 3�,

%B8 9(�0, �)
%�′

%B8 9(�0, �)
%�;

%B8 9(�0, �)
%�<

≤ 8�3
�0C0

%2B8 9(�0, �)
%�′%�;

%B8 9(�0, �)
%�<

,
%2B8 9(�0, �)
%�′%�<

%B8 9(�0, �)
%�;

,
%2B8 9(�0, �)
%�<%�;

%B8 9(�0, �)
%�′

≤ 12�3
�0C0

%3B8 9(�0, �)
%�′%�;%�<

≤ 21�3
�0C0

where the inequalities are element-wise. Therefore,



 %

%�′
%2

%�;%�<
ln B8 9(�0, �)






∞
≤

(
16�−3

� �
3 + 36�−2

� �
2 + 21�−1

� �
)
�3
�0C0 = $%(�3)

and by the Hölder’s inequality,���� %2

%�;%�<
ln B8 9(�0, �) −

%2

%�;%�<
ln B8 9(�0, �0)

���� ≤ $%(�3‖� − �0‖1)
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Hence, by the triangle inequality,

‖�3,: ‖� ≤
∑
8∈ℐ:

�∑
9=0

.8 93
2
�$%(�3‖�̂: − �0‖1) = $%

(
#�3A#,�

 

)
Step 5 We derive the bound for �4,: , which is a combination of our Step 2 and 4. The
same plus-and-minus technique can be applied such that

�4,: = �0
%2

%�%�′
!
(:)
#�
(�0;�0) − �̂:

%

%�%�′
!
(:)
#�
(�0; �̂:)

= �0

(
%2

%�%�′
!
(:)
#�
(�0;�0) −

%

%�%�′
!
(:)
#�
(�0; �̂:)

)
+ (�0 − �̂:)

(
%

%�%�′
!
(:)
#�
(�0; �̂:) −

%2

%�%�′
!
(:)
#�
(�0;�0)

)
+ (�0 − �̂:)

%2

%�%�′
!
(:)
#�
(�0;�0)

Without loss of generality, for ; = 1, . . . , 3�, let

�
(1)
4,:,; := �0,;

(
%2

%�%�′
!
(:)
#�
(�0;�0) −

%

%�%�′
!
(:)
#�
(�0; �̂:)

)
�
(2)
4,:,; := (�0,; − �̂:,;)

(
%

%�%�′
!
(:)
#�
(�0; �̂:) −

%2

%�%�′
!
(:)
#�
(�0;�0)

)
�
(3)
4,:,; := (�0,; − �̂:,;)

%2

%�%�′
!
(:)
#�
(�0;�0)

Similar to Step 4,���� %2

%�@%�<
ln B8 9(�0, �) −

%2

%�@%�<
ln B8 9(�0, �0)

���� ≤ $%(�3‖�−�0‖1) for all @ = 1, . . . , 3�;< = 1, . . . , 3�

so

‖�(1)4,:,; ‖1 + ‖�
(2)
4,:,; ‖1 ≤ (‖�0,; ‖1 + ‖�0,; − �̂:,; ‖1)





 %2

%�%�′
!
(:)
#�
(�0;�0) −

%

%�%�′
!
(:)
#�
(�0; �̂:)






∞

= $%

(
#

 
(B� + ‖�0,; − �̂:,; ‖1)�3‖�̂: − �0‖1)

)
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Note that the rate for %2

%�′%�;
ln B8 9(�0, �0) is $%(�2) for all ;, so



 %2

%�%�′
!
(:)
#�
(�0;�0)






∞
≤

∑
8∈ℐ:

�∑
9=0

.8 9





 %2

%�%�′
ln B8 9(�0, �0)






∞

= $%(#�2/ )

and
‖�(3)4,:,; ‖1 = $%

(
#�2‖�0,; − �̂:,; ‖1

 

)
Combine the rates for ‖�(1)4,:,; ‖1, ‖�

(2)
4,:,; ‖1 as well as ‖�(3)4,:,; ‖1, then

�4,:,; = $%

(
#(B� + ‖�0,; − �̂:,; ‖1)�3‖�̂: − �0‖1 + #�2‖�0,; − �̂:,; ‖1

 

)
as 3� is fixed and finite. Hence,

‖�4,: ‖� = ‖�4,:,; ‖1 = (#/ )$%

(
�3(B� + A#,�)A#,� + �2A#,�

)
Step 6 We study the 3�-by-3� matrix�2

�"#�,@(�0)which includes the third-order deriva-
tives of ln B8 9(�0, �0). For each ; , < = 1, . . . , 3�,

%2

%�;%�<
"#�,@(�0) =

1
 

 ∑
:=1

1
#/ 

%2

%�;%�<

%

%�@
!
(:)
#�
(�0;�0) −

%2

%�;%�<
�0,@

%

%�′
!
(:)
#�
(�0;�0)

=
1
 

 ∑
:=1

1
#/ 

∑
8∈ℐ:

�∑
9=0

.8 9

(
%3

%�;%�<%�@
ln B8 9(�0;�0) − �0,@

%2

%�;%�<

%

%�′
ln B8 9(�0;�0)

)
We have discussed the rate for %3

%�;%�<%�′
ln B8 9(�0;�0) in Step 4, which is $%(�3), and it is

identical for %3

%�;%�<%�:
ln B8 9(�0;�0). See Lemma 3. Therefore, by the triangle inequality
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and Hölder’s inequality,���� %2

%�;%�<
"#�,@(�0)

���� ≤ �∑
9=0

.8 9

(���� %3

%�;%�<%�@
ln B8 9(�0;�0)

���� + ‖�0,@ ‖1 ×




 %2

%�;%�<

%

%�′
ln B8 9(�0;�0)






∞

)
≤

�∑
9=0

.8 9($%(�3) + $(B��3))

= $%

(
(1 + B�)�3

)
Therefore, �2

�"#�,@(�0) = $%((1 + B�)�3).

Step 7 In this part, we prove the asymptotic normality for

#1/2"#� (�0;�0, �0) =
1√
#

#∑
8=1

�∑
9=0

.8 9B
−1
8 9 (�0, �0)

(
%

%�′
B8 9(�0, �0) − �0

%

%�′
B8 9(�0, �0)

)
Since we allow � →∞ as # →∞, we apply the Lindeberg-Feller central limit theorem

(e.g., Proposition 2.27 in Vaart, 1998). Note that +0A(<8(�0;�0, �0)) may vary across # as
�0 = �#0 and �0 = �#0 actually depends on # , even if � < ∞ is fixed. We temporarily
highlight the subscript # for clarity. The Lindeberg’s condition that needs to be verified
in our setting is

lim
#→∞

E
[
‖<#8(�0;�#0, �#0)‖22�[‖<#8(�0;�#0, �#0)‖2 ≥ &

√
#)

]
= 0 for every & > 0

For any ; , @ = 1, . . . , 3�,

E[<#8,;(�0;�#0, �#0)<#8,@(�0;�#0, �#0)] = E
{ �#∑
9=0

�#∑
:=0

.8 9.8:B
−1
8 9 (�0, �#0)B−1

8:
(�0, �#0)(

%

%�;
B8 9(�0, �#0) − �#0,;

%

%�′
B8 9(�0, �#0)

)
(
%

%�@
B8:(�0, �#0) − �#0,@

%

%�′
B8:(�0, �#0)

) }
The integrand above is bounded by �−2

�
�2
#
(1 + B�,# )24�2

�0C0
almost surely because (i)
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∑�

9=0.8 9 = 1, (ii) max9 B−1
8 9
(�0, �#0) ≤ �−1

�
�# and (iii)

max
9=1,...,�#

���� %

%�;
B8 9(�0, �#0)−�#0,;

%

%�′
B8 9(�0, �#0)

���� ≤ 2��0C0+‖�#0,; ‖1




 %

%�′
B8 9(�0, �#0)






∞
≤ 2(1+B�,# )��0C0

Although the integrand diverges as # →∞, its rate is known as �2
#
(1 + B�,# )2. As long as

�# (1 + B�,# ) = >(
√
#), for any & > 0, there exists large enough #& ∈ N such that

#−1/2‖<#8(�0;�#0, �#0)‖2 ≤ & ∀# > #&

with probability one. Therefore, the Lindeberg’s condition holdswhen#−1/2�# (1+B�,# ) =
>(1). By the Lindeberg-Feller central limit theorem, if+0A(<#8(�0;�#0, �#0)) → Σ" , then

#1/2"#� (�0;�#0, �#0) →3 #(0,Σ")

Step 8 In this part, we prove the convergence in probability for ��′"#� (�0;�0, �0),
which is

Ω̂" := 1
#

#∑
8=1

�∑
9=0

.8 9

(
%2

%�%�′
ln B8 9(�0, �0) − �0

%2

%�%�′
ln B8 9(�0, �0)

)
We want to prove that ‖Ω̂" −Ω" ‖� = >%(1), where

Ω" = E


�∑
9=0

.8 9

(
%2

%�%�′
ln B8 9(�0, �0) − �0

%2

%�%�′
ln B8 9(�0, �0)

)
is the population analog. Since 3� is fixed and finite, an element-wise proof is sufficient.
For any <, ; = 1, . . . , 3�, let Ω̂",<; and Ω",<; be the (<, ;)-th entry of Ω̂" and Ω" ,
respectively. Obviously, Ω̂",<; −Ω",<; is mean zero. Since



 %2

%�′%�;
ln B8 9(�0, �0)






∞
≤ 2�−2

� �
2��0C0 + 6�−1

� ��
2
�0C0 ≤ �

′�2
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for some constant �′ > 0 almost surely, where the first inequality is derived in Step 2 in
the Proof of Lemma , then������

�∑
9=0

.8 9

(
%2

%�<%�;
ln B8 9(�0, �0) − �0,<

%2

%�%�;
ln B8 9(�0, �0)

)������
≤

�∑
9=0

.8 9

���� %2

%�<%�;
ln B8 9(�0, �0) − �0,<

%2

%�%�;
ln B8 9(�0, �0)

����
≤

�∑
9=0

.8 9

(���� %2

%�<%�;
ln B8 9(�0, �0)

���� + ‖�0,< ‖1 ×




 %2

%�%�;
ln B8 9(�0, �0)






∞

)
≤

�∑
9=0

.8 9(1 + B�)�′�2

=(1 + B�)�′�2, almost surely

where the first and second inequalities are by the triangle inequality and the Hölder’s
inequality, and the last equality is by

∑�

9=0.8 9 = 1. Then, by the Hoeffding’s inequality for
bounded random variables, for any C > 0,

P
(
# |Ω̂",<; −Ω",<; | ≥ C

)
≤ 2 exp

(
− C2

#(1 + B�)�′�2

)
suggesting that, for any & > 0,

P

©­­­­«
|Ω̂",<; −Ω",<; |√

�′(1 + B�)�2

#

≥ C
ª®®®®¬
≤ 2 exp

(
−C2

)
< &

by choosing C >
√

log(2/&). Thus, |Ω̂",<;−Ω",<; | = $%(
√
#−1�′(1 + B�)�2) and converges

to zero in probability as long as #−1(1 + B�)�2 = >(1), which is weaker than the condition
#−1(1 + B�)2�2 = >(1) required by the central limit theorem.
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E.5 Proof of Theorem 3

The proof is in the same logic as the Step 2, 3 and 8 in the proof of Theorem 2. It suffices
to verify the first condition

sup
�∈Γ

����‖"#� (�; �̂: , �̂:)‖22 − ‖E["#� (�;�0, �0)]‖22
����→? 0

Some algebra shows that

‖"#� (�; �̂: , �̂:)‖22−‖E["#� (�;�0, �0)]‖22
= ‖"#� (�; �̂: , �̂:) − E["#� (�;�0, �0)]‖22
+ 2

(
"#� (�; �̂: , �̂:) − E["#� (�;�0, �0)]

)′
E["#� (�;�0, �0)]

By the triangle inequality,

‖"#� (�; �̂: , �̂:) − E["#� (�;�0, �0)]‖2 ≤ ‖"#� (�; �̂: , �̂:) −"#� (�;�0, �0)‖2
+ ‖"#� (�;�0, �0) − E["#� (�;�0, �0)]‖2

For thefirst term A1(�) := ‖"#� (�; �̂: , �̂:)−"#� (�;�0, �0)‖2, by using the same empirical
process techniques, we need to derive the bounds (uniformly over Γ) on

�1,:(�) := G=,: (<8(�; �̂: , �̂:) − <8(�;�0, �0))
�2,:(�) :=

√
#/ (E [<8(�; �̂: , �̂:) | ,−:] − E [<8(�;�0, �0)])

whichwill be shown inStep1and2, respectively. The second term A2(�) := ‖"#� (�;�0, �0)−
E["#� (�;�0, �0)]‖2 is more difficult although it does not depend on �̂: and �̂: . We will
be derived the bound through the supremum of the empirical process in Step 3. Finally,
we need to derive the rate for A3(�) := ‖E["#� (�;�0, �0)]‖2 in Step 4. We will show that

sup
�∈Γ

A1(�) ≤ #−1/2

(
sup
�∈Γ
‖�1,:(�)‖2 + sup

�∈Γ
‖�2,:(�)‖2

)
= $%

(
�2
�
(1 + B�)A#,� + ��A#,�

√
#

+ �3
� (1 + B�)A

2
#,� + �

2
� A#,�A#,�

)
sup
�∈Γ

A2(�) = $%

(
�2
�
(1 + B�)
√
#

)
sup
�∈Γ

A3(�) = $%(��(1 + B�))
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Then, by the Hölder’s inequality,

sup
�∈Γ

����‖"#� (�; �̂: , �̂:)‖22 − ‖E["#� (�;�0, �0)]‖22
���� ≤ sup

�∈Γ
(A1(�) + A2(�))2

+ sup
�∈Γ
(A1(�) + A2(�)) × sup

�∈Γ
A3(�)

Given that �� = � log# and B� = $(1), we have �2
�
= �2(log#)2 and the rates are smaller to

those in Theorem 2 (because #−? log# → 0 for any ? > 0). As long as the rates in Eq.(4.8)
are satisfied, we have sup�∈Γ A1(�) + sup�∈Γ A2(�) = >%(1), so the proof is done as

sup
�∈Γ

����‖"#� (�; �̂: , �̂:)‖22 − ‖E["#� (�;�0, �0)]‖22
���� ≤ sup

�∈Γ
A1(�) + sup

�∈Γ
A2(�) = >%(1)

Step 1 To show �1,:(�), we need to work on

�1,:,;(�) := %

%�;
ln B8 9(�, �) −

%

%�;
ln B8 9(�, �0)

�2,:,;(�) := �0,;
%

%�′
ln B8 9(�, �0) − �;

%

%�′
ln B8 9(�, �)

for some : = 1, . . . ,  and ; = 1, . . . , 3�. By the Taylor’s expansion, Lemma 3 and
Assumption 9,



 %2

%�′%�;
ln B8 9(�, �0)






∞
= max

9
B−2
8 9 (�, �0)





 %

%�′
B8 9(�, �0)






∞
+max

9
B−1
8 9 (�, �0)





 %

%�′
%

%�;
B8 9(�, �0)






∞

≤ sup
�∈Γ

max
9
B−2
8 9 (�, �0)$(��0C0) + sup

�∈Γ
max
9
B−1
8 9 (�, �0)$(�2

�0C0)

= $(�2
� ) almost surely,

Then, we can similarly derive that sup�∈Γ |�1,:,;(�)| = $
(
�2
�
‖� − �0‖1

)
and

sup
�∈Γ
|�2,:,;(�)| = $

(
�2
� (‖�0,; ‖1 + ‖�0,; − �; ‖1)‖� − �0‖1 + �� ‖�0,; − �; ‖1

)
almost surely. Hence,

sup
�∈Γ
‖�1,:(�)‖2 = $%(�2

� (1 + B�)A#,� + ��A#,�)
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Step 2 Let

5:(A) := E [<8(�;�0 + A(�̂: − �0), �0 + A(�̂: − �0)) | ,−:] − E [<8(�;�0, �0)] , A ∈ [0, 1]

so �2,: =
√
#/ 5:(1) and 5:(1) = 5 ′′

:
(A)/2 for some Ã ∈ (0, 1) by the Taylor’s expansion.

Here Ã may depend on � ∈ Γ. The second-order derivative

5 ′′: (A) = E
[∑

9

.8 9
%2

%A2

(
%

%�′
ln B8 9(�, �0 + A(�̂: − �0))

− (�0 + A(�̂: − �0))
%

%�′
ln B8 9(�, �0 + A(�̂: − �0))

)
| ,−:

]
Now letB̃8 9 := B8 9(�, �0 + A(� − �0)). Since for any ; = 1, . . . , 3�,

%2

%A2
%

%�;
ln B̃8 9 = 2B̃−3

8 9

(
%

%�
B̃8 9 · (� − �0)

)2
%

%�;
B̃8 9 − B̃−2

8 9 (� − �0)′
(

%2

%�%�′
B̃8 9

)
(� − �0)

%

%�;
B̃8 9

− B̃−2
8 9

(
%

%�
B̃8 9

)
(� − �0)

(
%2

%�%�;
B̃8 9

)
(� − �0) + B̃−1

8 9 (� − �0)′
%3

%�%�′%�;
B̃8 9(� − �0)

then, by Lemma 3, the Hölder’s inequality, the triangle inequality and Assumption 9,

sup
�∈Γ

%2

%A2
%

%�;
ln B̃8 9 = $(�3

� ‖� − �0‖22), 0.B.

Let �̃:,; = �0,; + A(�; − �0,;), since

%2

%A2 �̃:,;
%

%�′
ln B̃8 9 = 2(�; − �0,;)

%2

%A%�′
ln B̃8 9 + �̃:,;

%2

%A2
%

%�
ln B̃8 9

and �����̃:,; %2

%A2
%

%�
ln B̃8 9

���� ≤ ‖�̃:,; ‖1 × sup
�∈Γ





 %2

%A2
%

%�
ln B̃8 9






∞
≤ $(�3

� ‖�̃:,; ‖1‖� − �0‖22) 0.B.,

then, by taking supremum over Γ on both sides,

sup
�∈Γ
E

[
%2

%A2
%

%�;
ln B̂8 9 −

%2

%A2 �̃:,;
%

%�′
ln B̂8 9

]
= $

(
�3
� (1 + ‖�̃:,; ‖1) ‖� − �0‖22 + �2

� ‖� − �0,; ‖1‖� − �0‖1
)
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Therefore,
sup
�∈Γ
‖�2,: ‖ =

√
#/ × $%(�3

� (1 + B�)A
2
#,� + �

2
� A#,�A#,�)

Step 3 Recall that

"#� (�;�0, �0) − E["#� (�;�0, �0)] =
1
#

#∑
8=1

<8(�;�0, �0) − E[<8(�;�0, �0)]

It suffices to consider

sup
�∈Γ

����� 1
#

#∑
8=1

<8;(�;�0, �0) − E[<8;(�;�0, �0)]
�����

for any ; = 1, . . . , 3�.
We introduce the empirical process notations. Without loss of generality, let 5�(,8) :=

<81(�;�0, �0)which is a mapping from R3 to R and 3 = $(� + 3�) is the dimension19 of the
data vector,8 . Also let ℱ := { 5�(·) | � ∈ Γ} and ‖P# − %‖ℱ := sup 5 ∈ℱ |#−1 ∑#

8=1 5 (,8) −
E[ 5 (,8)]|. Notice that

‖P# − %‖ℱ = ‖P# − %‖Γ := sup
�∈Γ
|#−1

#∑
8=1

5�(,8) − E[ 5�(,8)]|

Then, by the Markov’s inequality, for any C > 0,

P(‖P# − %‖Γ > C) ≤ C−1#−1/2E[
√
# ‖P# − %‖Γ]

Thus, to show the convergence in probability, it suffices to discuss the convergence of the
supremum of the empirical process. Since 5�(,8) is a smooth function in �, by the Taylor’s
expansion and the Hölder’s inequality

5�1(,8) − 5�2(,8) = <81(�1;�0, �0) − <81(�2;�0, �0)

= (�1 − �2)′
%

%�
<81(�2;�0, �0) + >(‖�1 − �2‖2)

≤ ‖�1 − �2‖2 ×








�∑
9=0

.8 9
%2

%�′%�1
ln B8 9(�2, �0) − �0,1

%2

%�%�′
ln B8 9(�2, �0)








2

193 = � + 3- + 3& in the exogenous case and 3 = 2� + 3-(3! + 3&) in the endogenous case.
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In Step 1, we show that for every 9, ; and � ∈ Γ,



 %2

%�′%�;
ln B8 9(�, �0)






∞
= $(�2

� ) almost surely

The rate is the same for %2

%�′%�1
ln B8 9(�, �0). Thus, for some large constant � > 0 (only

depends on ��0C0)






�∑
9=0

.8 9
%2

%�′%�1
ln B8 9(�2, �0) − �0,1

%2

%�%�′
ln B8 9(�2, �0)








2

≤ �(1 + B�)�2
� , 0.B.

and | 5�1(,8) − 5�2(,8)| ≤ ‖�1 − �2‖2�(1 + B�)�2
�
. In other words, 5�(,8) is Lipschitz in

the index parameter � with respect to the Euclidean distance ‖ · ‖2. Moreover, for some
constant 21 > 0 (only depends on ��0C0),

5�(,8) :=
�∑
9=0

.8 9B
−1
8 9 (�, �0)

(
%

%�;
B8 9(�, �0) − �0,;

%

%�′
B8 9(�, �0)

)
≤ sup

�∈Γ
max
9
B−1
8 9 (�, �0) × sup

�∈Γ

���� %

%�;
B8 9(�, �0) − �0,;

%

%�′
B8 9(�, �0)

����
≤ 21��(1 + B�)

where the third line is by the triangle inequality, the Hölder’s inequality and Lemma 3.
Thus, �1(F) := 21��(1 + B�) is the envelope function. As �� → ∞, define the constant
function �(F) := �(1 + B�)�2

�
≥ �1(F) with some constant � > 0. By Theorem 2.7.11 in

Van Der Vaart and Wellner (1996), the bracketing number

#[](2&‖�‖%,2, ℱ , ‖ · ‖%,2) ≤ #(&, Γ, ‖ · ‖2)

is bounded by the covering number associated with the !2-norm ‖-‖%,2 = (
∫
-23%)1/2

and the Euclidean norm ‖ · ‖2. Given the constant function �(F), ‖�‖%,2 = �(1 +
B�)�2

�
(
∫

13%)1/2 = �(1 + B�)�2
�
. Since Γ ⊂ R3� is a bounded subset with fixed dimen-

sions, then
22&
−1 ≤ #(&, Γ, ‖ · ‖2) ≤ 23&

−1

for some constant 0 < 22 < 1 < 23 < ∞ depending on the volume of Γ, according to
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Lemma 2.7 in Sen (2022). Therefore, for any & > 0,

log#[](&, ℱ , ‖ · ‖%,2) ≤ log 223‖�‖%,2&−1

By the maximal inequality with bracketing (Theorem 4.12, Sen, 2022),

E[
√
# ‖P# − %‖Γ] ≤ 24�[](‖�‖%,2, ℱ ∪ {0}, ‖ · ‖%,2)

where the bracketing integral

�[](‖�‖%,2, ℱ ∪ {0}, !2(%)) :=
∫ ‖�‖%,2

0

√
log#[](�, ℱ ∪ {0}, ‖ · ‖%,2)3�

≤
∫ ‖�‖%,2

0

√
log 223‖�‖%,2�−13�

= 223‖�‖%,2
∫ 1

223

0

√
log C−13C

≤ 25‖�‖%,2

for someconstant 24, 25 > 0. The third line is by letting� = 223‖�‖%,2C (so 3� = 223‖�‖%,23C)
and the fourth line is because

∫ 1
0

√
log C−13C is a converged20 integral (cf. Dudley’s inequal-

ity, Ch.8, Vershynin, 2018). Then,

E[‖P# − %‖Γ] ≤ #−1/22425‖�‖%,2 = $
(
(1 + B�)�2

�√
#

)
and hence,

sup
�∈Γ

����� 1
#

#∑
8=1

<81(�;�0, �0) − E[<81(�;�0, �0)]
����� = $%

(
(1 + B�)�2

�√
#

)
Repeat the procedure for each coordinate ; = 1, . . . , 3� and obtain

sup
�∈Γ
‖"#� (�;�0, �0) − E["#� (�;�0, �0)]‖2 = $%

(
(1 + B�)�2

�√
#

)
20It is known that limG→∞ ln(G)/G? = 0 for any ? > 0. Equivalently, limH→0

ln(1/H)
1/H? = 0. Although

limH→0 1/H? = ∞,
∫ 1

0 1/H?3G converges (so it is finite) when ? < 1, suggesting
∫ 1

0 log 1
H 3H also converges.

Hence,
∫ 1

0

√
log 1

H 3H converges.

106



Remark 3. By the definition,By Assumption 9, sup�∈Γ max9 B−1
8 9
(�, �0) = $(��) with proba-

bility one. By , ���� %

%�;
B8 9(�, �0) − �0,;

%

%�′
B8 9(�, �0)

���� ≤ (1 + B�)��0C0 0.B.

Combining with the rate �� , we have the score

|<8;(�;�0, �0)| ≤ ���(1 + B�) 0.B.

bounded for every � ∈ Γ and some constant � > 0. By the Hoeffding’s inequality, we can
prove that for each ;,

P

(����� 1
#

#∑
8=1

<8;(�;�0, �0) − E[<8;(�;�0, �0)]
����� ≥ C

)
≤ 2 exp

(
− 2#C2

�2�2
�
(1 + B�)2

)
so ‖"#� (�;�0, �0)−E["#� (�;�0, �0)]‖2 = $%(��(1+ B�)/

√
#) for every � ∈ Γ. Although

it has been proved to be true, we cannot simply take supremum on both sides and then
claim the supremum is also at the rate ��(1 + B�)/

√
# . The supremum is not necessarily

mean zero if #−1 ∑#
8=1 <8;(�;�0, �0) − E[<8;(�;�0, �0)] is mean zero.

Step 4 Finally, we discuss the rate A3(�) := ‖E["#� (�;�0, �0)]‖2 = ‖E[<8(�;�0, �0)]‖2.
We have shown in the remark above that for each ;,

sup
�∈Γ
|<8;(�;�0, �0)| ≤ ���(1 + B�) 0.B.

Then,

sup
�∈Γ

A2
3(�) = sup

�∈Γ

3�∑
;=1
(E[<8;(�;�0, �0)])2

≤
3�∑
;=1

(
sup
�∈Γ
E[<8;(�;�0, �0)]

)2

≤
3�∑
;=1

(
E sup

�∈Γ
<8;(�;�0, �0)

)2

≤ $(�2
� (1 + B�)

2)

where the second inequality is because the expectation of supremum is greater than the
supremum of expectation. Therefore, sup�∈Γ A3(�) = $(��(1 + B�)).
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E.6 Proof of Theorem 4

Our proof is a corollary of Andrews (1999, Theorem 3). Assumption 6 suffices for his
Assumption 22∗ given that (i) the log-likelihood function is well-defined and continuously
differentiable over the whole real vector space, and (ii) Θ is either R3� or the product
of R’s and [0,∞). It is worth noting that his objective function ;# (�) (we use # instead
of )) is aggregated and he requires #−1;# (�) →? ;(�) for some ;(�) uniformly, but we
have "#� (�) divided by # . Hence, to plug in his result, ;# (�) = # ‖"#� (�)‖22 so
#−1;# (�) = ‖"#� (�)‖22, which converges to ‖"(�)‖22 by the continuous mapping theory
and

1
#/ 

%

%�
!
(:)
#�
(�; �̂'"!�

:
) →? E

[
%

%�
!(�;�0)

]
for any : = 1, . . . ,  

Assumption 7 and 8 are enough for his Assumption 3 that we proved

#1/2��′‖"#� (�0; �̂, �̂)‖22→3 2Ω"#(0,Σ")
�2
�′‖"#� (�0; �̂, �̂)‖22→% 2Ω"Ω

′
"

Assumption 9 andTheorem 3 satisfy hisAssumption 1. HisAssumption 4 holds according
to his Theorem 1. His Assumption 5 and 6 are automatically satisfied given the structure
of Θ and the common convergence rate

√
# . Then, by his Theorem 3,

√
#(�̂��"! − �0) →3 �̃ = arg min

�∈Γ(�0)
(� + #(0, +"))′Ω"Ω

′
" (� + #(0, +"))

where +" = (Ω"Ω
′
"
)−1Ω"Σ"Ω

′
"
(Ω"Ω

′
"
)−1 = Ω−1

"
Σ"Ω

−1
"
. One important point to

emphasize is the quadratic approximation. In his Theorem 3, the third result says that
;# (�̂) − ;# (�0) →3

1
2�̂
′
��̂. The quadratic approximation in our case is

‖"#� (�̂��"!; �̂, �̂)‖22 − ‖"#� (�0; �̂, �̂)‖22 ≈ −
1

2# �̃′�2
�‖"#� (�̂��"!; �̂, �̂)‖22�̃

and hence

#
(
‖"#� (�̂��"!; �̂, �̂)‖22 − ‖"#� (�0; �̂, �̂)‖22

)
→3 −�̃′Ω"Ω

′
" �̃

The details of derivations are provided in Appendix F.4 and F.5.
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F Auxiliary Results

F.1 Derivatives of the Log-likelihood

To be clear, for the :-by-1 vector G = (G1, . . . , G3)′ and the function H = (H1(G), . . . , H?(G))′,
we use the following notations

�GH1(G) =
3

3G
H1(G) =

(
%

%G1
H1(G) · · ·

%

%G3
H1(G)

)

�GH(G) =
3

3G
H(G) =

©­­­­­«
%

%G1
H1(G) · · ·

%

%G3
H1(G)

...
. . .

...

%

%G1
H?(G) · · ·

%

%G3
H?(G)

ª®®®®®¬
�G′H1(G) = (�GH1(G))′ , �G′H(G) = (�GH(G))′

�2
GH1(G) =

32

3G3G′
H1(G) =

©­­­­­­­«

%2

%G2
1
H1(G) · · · %2

%G3%G1
H1(G)

...
. . .

...

%2

%G1%G3
H1(G) · · ·

%2

%G2
3

H1(G)

ª®®®®®®®¬
Note that �GH1(G) is 1-by-3 and �G′H1(G) is 3-by-1. For clarity, we suppress the subscripts
such as #, � and ). We use different notations for dimensions but they are unambiguous.

weplug in the logit probability for the function !(�;�). Recall that !(�) :=
∑
C

∑
8

∑
9 .8 9C log B8 9C(�),
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then

��!(�) =
∑
C

∑
8

∑
9

.8 9CB
−1
8 9C (�)��′B8 9C(�)

�2
�!(�) =

∑
C

∑
8

∑
9

.8 9C

[
−B−2

8 9C (�)��′B8 9C(�)��B8 9C(�) + B−1
8 9C (�)�

2
�B8 9C(�)

]
%3

%�:%�;%�<
!(�) =

∑
C

∑
8

∑
9

.8 9C

{
2B−3
8 9C (�)

%

%�:
B8 9C(�)

%

%�;
B8 9C(�)

%

%�<
B8 9C(�)

− B−2
8 9C (�)�

2
�B8 9C(�) + B

−1
8 9C (�)�

3
�B8 9C(�)

− B−2
8 9C (�)

[
%2

%�:%�;
B8 9C(�)

%

%�<
B8 9C(�) +

%2

%�:%�<
B8 9C(�)

%

%�;
B8 9C(�)

− %2

%�;%�<
B8 9C(�)

%

%�:
B8 9C(�)

]
+ B−1

8 9C (�)
%3

%�:%�;%�<
B8 9C(�)

}
∀ :, ;, <

It suffices to derive the first, second and third partial derivatives for B8 9C(�). With the
interchangeability of the integral and the derivative,

B8 9C(�) =
∫

# 9($8·C))(�8)3�8
%

%�:
B8 9C(�) =

∫
%

%�:
# 9($8·C))(�8)3�8

%

%�:%�;
B8 9C(�) =

∫
%

%�:%�;
# 9($8·C))(�8)3�8

%

%�:%�;%�<
B8 9C(�) =

∫
%

%�:%�;%�<
# 9($8·C))(�8)3�8

where $8·C = ($81C , . . . , $8�C C)′ and the logit probability (also known as the soft-max func-
tion) for the product 9 is

# 9($8·C) =
exp($8 9C)

1 +∑
9′ exp($8 9′C)

We temporarily drop the subscript 8, C and the dot without loss of generality. By the chain
rule,

%

%�:
# 9($) =

∑
@

%

%$@
# 9($)

%

%�:
$@

Hopefully, $@ is a linear function of �: , so %
%�:

$@ is no longer a function of �: which helps
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simplify the second and third-order of derivatives:

%2

%�;%�:
# 9($) =

∑
A

∑
@

%2

%$A%$@
# 9($)

%

%�;
$A

%

%�:
$@

%3

%�<%�;%�:
# 9($) =

∑
C

∑
A

∑
@

%3

%$C%$A%$@
# 9($)

%

%�<
$C

%

%�;
$A

%

%�:
$@

There are some nice properties of the soft-max function: it is continuously differentiable
for all real vectors $ and bounded:

%

%$ 9
# 9($) =

exp($ 9)
1 +∑

9′ exp($ 9′)
−

exp($ 9) exp($ 9)
(1 +∑

9′ exp($ 9′))2
= # 9($) − #2

9 ($) ∈ (0, 1)

%

%$@
# 9($) = −

exp($ 9) exp($@)
(1 +∑

9′ exp($ 9′))2
= −# 9($)#@($) ∈ (−1, 0) for @ ≠ 9

Equivalently, %

%$@
# 9($) = #@($)[�[@ = 9] − # 9($)] and hence,

%2

%$A%$@
# 9($) =

(
�[@ = 9] − # 9($)

) %

%$A
#@($) − #@($)

%

%$A
# 9($)

=
(
�[@ = 9] − # 9($)

)
#A($)[�[A = @] − #@($)] − #@($)#A($)[�[A = 9] − # 9($)]

= #A($)�[A = @ = 9] − #A($)#@($) (�[@ = 9] + �[A = 9]) − #A($)# 9($)�[A = @]
+ 2#A($)#@($)# 9($)

which is still bounded (e.g., by [−5, 5]) for any $. Similarly,

%3

%$A%$@%$C
# 9($) = #C($)[�[A = C] − #A($)]�[A = @ = 9]

+ (�[@ = 9] + �[A = 9])#C($)
(
�[A = C] − #A($) + �[@ = C] − #@($)

)
+ �[A = @]#C($)

(
�[A = C] − #A($) + �[9 = C] − # 9($)

)
+ 2#A($)

[
�[A = C] + �[@ = C] + �[9 = C] − #A($) − #@($) − # 9($)

]
which is also bounded.

Second, we prove the following important lemma which helps derive the rates of the
derivatives.

Lemma 3. Suppose that $8 9 = ,8 9�1 + /8 9�8�2 where the random variables |,8 9 | ≤ � and
|/8 9 | ≤ � for some constant 0 < � < ∞ have bounded supports. Additionally, assume that
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(,8 9 , /8 9) is independent of �8 . Then, for any :, ;, < = 1, 2,

%

%�:
B8 9(�) ≤ 2�, %2

%�;%�:
B8 9(�) ≤ 6�2 and %3

%�<%�;%�:
B8 9(�) ≤ 21�3

with probability one, where $8 = ($81, . . . , $8�).

The proof is based on the fact that # 9($8) ∈ [0, 1] and
∑�

9=1 # 9($8) = 1 − #0($8) for all
$8 and 9. Since $8 9 is linear in �1and �2, then %$8 9/%�1 =,8 9 and %$8 9/%�2 = /8 9�8 . Then,

%

%�:
# 9($8) =

�∑
@=1

#@($8)[�[@ = 9] − # 9($8)]
%

%�:
$8@

=

(
# 9($8) − #2

9 ($8)
) %

%�:
$8 9 −

∑
@≠9

#@($8)# 9($8)
%

%�:
$8@

=

(
# 9($8) − #2

9 ($8)
) %

%�:
$8 9 − (1 − #0($8) − # 9($8))# 9($8)

%

%�:
$8@

We take the expectation over �8 on both sides:

%

%�:
B8 9(�) =

∫ (
# 9($8) − #2

9 ($8)
) %

%�:
$8 9)(�8)3�8

−
∫
(1 − #0($8) − # 9($8))# 9($8)

%

%�:
$8@)(�8)3�8

For the first term,

• when : = 1, since 0 < #@($8)# 9($8) < 1 for any @ and $8 ,∫ (
# 9($8) − #2

9 ($8)
)
,8 9)(�8)3�8 =,8 9

∫ (
# 9($8) − #2

9 ($8)
)
)(�8)3�8 ≤ �

∫
)(�8)3�8 = �

• when : = 2,∫ (
# 9($8) − #2

9 ($8)
)
/8 9�8)(�8)3�8 = /8 9

∫ (
# 9($8) − #2

9 ($8)
)
�8)(�8)3�8

≤ −�
∫
{�8<0}

�8)(�8)3�8 + �
∫
{�8>0}

�8)(�8)3�8

≤ 2�
∫
{�8>0}

�8)(�8)3�8

=
√

2/�� ≤ �
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where we use the (0, 1) bound again in the second line, and the last line is by21 the
Gamma function Γ(1) = 1:∫ ∞

0
�8(2�)−1/24−�

2
8
/23�8 = (2�)−1/2

∫ ∞

0

√
2C4−C

√
2

2
√
C
3C = (2�)−1/2Γ(1)

The second term can be shown similarly using the fact that (1 − #0($8) − # 9($8))# 9($8) is
between [0, 1]. Therefore, ���� %

%�:
B8 9(�)

���� ≤ 2�

Next,

%2

%�;%�:
# 9($8) =

∑
A

∑
@

%2

%$A%$@
# 9($8)

%

%�;
$8A

%

%�:
$8@

=
∑
A

∑
@

(
#A($8)�[A = @ = 9] − #A($8)#@($8) (�[@ = 9] + �[A = 9])

− #A($8)# 9($8)�[A = @]
)
%

%�;
$8A

%

%�:
$8@

+
∑
A

∑
@

2#A($8)#@($8)# 9($8)
%

%�;
$8A

%

%�:
$8@

= # 9($8)
%

%�;
$8 9

%

%�:
$8 9 −

∑
A

#A($8)# 9($8)
%

%�;
$8A

%

%�:
$8 9

−
∑
@

# 9($8)#@($8)
%

%�;
$8 9

%

%�:
$8@ −

∑
A

#A($8)# 9($8)
%

%�;
$8A

%

%�:
$8A

+
∑
A

∑
@

2#A($8)#@($8)# 9($8)
%

%�;
$8A

%

%�:
$8@

21Another way to think about this is through the mean of the half-normal distribution. If . = |- | and
|- | ∼ #(0, �2), then . follows a half-normal distribution with the density function

5 (H) =
√

2
�
√
�

exp
(
− H

2

2�2

)
, H ≥ 0

and mean E[.] = �
√

2√
�
. In our case, � = 1 and

∫
�8≥0 �8Φ(3�8) =

1
2E[.] = 1/

√
2�.
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Recall that there are four combinations:

%

%�;
$8A

%

%�:
$8@ =



,8A,8@ if ; = 1, : = 1

,8A/8@�8 if ; = 1, : = 2

,8@/8A�8 if ; = 2, : = 1

/8@/8A�2
8

if ; = 2, : = 2

The first three cases are essentially the same as previous case so the upper bounds are just
�2: for any function 6(�8) ∈ [0, 1],∫

6(�8)
%

%�;
$8 9

%

%�:
$8 9)(�8)3�8

=


∫
6(�8),8A,8@)(�8)3�8 ≤ �2

∫
)(�8)3�8 = �2 if ; = 1, : = 1∫

6(�8),8A/8@�8)(�8)3�8 ≤ �22
∫ ∞

0 �8)(�8)3�8 =
√

2/��2 if ; = 1, : = 2

The last one seems different but has the same upper bound because �2
8
≥ 0, and hence,∫ ∞

−∞
/8@/8A�

2
8 )(�8)3�8 ≤ �

2+0A(�8) = �2

Thus, ���� %2

%�;%�:
B8 9(�)

���� ≤ 6�2

Finally, for the third-order derivative, there are eight combinations

%

%�<
$8C

%

%�;
$8A

%

%�:
$8@ =



,8A,8@,8C if ; = 1, : = 1, < = 1

,8A,8@/8C�8 if ; = 1, : = 1, < = 2

,8A/8@,8C�8 if ; = 1, : = 2, < = 1

,8A/8@/8C�2
8

if ; = 1, : = 2, < = 2

/8A,8@,8C�8 if ; = 2, : = 1, < = 1

/8A,8@/8C�2
8

if ; = 2, : = 1, < = 2

/8A/8@,8C�2
8

if ; = 2, : = 2, < = 1

/8A/8@/8C�3
8

if ; = 2, : = 2, < = 2

It suffices to verify that
∫ ∞
−∞ /8A/8@/8C�

3
8
)(�8)3�8 is bounded. Letting G = �2

8
/2 (so �8 =

√
2G
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and 3�8/3G = 1/
√

2G)

(2�)−1
∫ ∞

0
�3
8 4
−�2

8
/23�8 = �−1

∫ ∞

0
G4−G3G = �−1Γ(2) = �−1

Hence, ∫ ∞

−∞
/8A/8@/8C�

3
8 )(�8)3�8 ≤ 2�3

∫ ∞

0
�3
8 )(�8)3�8 ≤ �

3

Some algebra shows that ���� %

%�:%�;%�<
B8 9C(�)

���� ≤ 21�3

as there are 21 terms that are between 0 and 1 in the summation.
The generalization to vectors �1 and �2 are straightforward as long as +0A(�8) is

diagonal.

F.2 Implicit Differentiation in BLP Models

In this section, we derive the derivatives while using contraction mapping to obtain
� = �(�) := �(�> , �D). By the chain-rule,

3

3�
!#�)(�) =

∑
C

∑
8

∑
9

.8 9CB
−1
8 9C (�)

3

3�
B8 9C(�(�), �)

Since B8 9C =
∫
# 9($8·C))(�8)3�8 , interchange the integral and the partial derivative and then

3B8 9C
3� =

∫
3
3�# 9($8.C))(�8)3�8 . According to theprevious section, %

%�># 9($8.C) =
∑
@

%
%$8@C

# 9($8.C) %
%�>$8@C

but now %$@
%�> =

%�@C
%�> +

%�8@C
%�> . Similarly, %$@%�D =

%�@C
%�D +

%�8@C
%�D . By the implicit differentiation,

%�@C(�> , �D)
%�>

= −
(
%B@C(�·C , �> , �D)

%�@C

)−1 %B@C(�·C , �> , �D)
%�>

%�@C(�> , �D)
%�D

= −
(
%B@C(�·C , �> , �D)

%�@C

)−1 %B@C(�·C , �> , �D)
%�D
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where

%B@C(�·C , �> , �D)
%�@C

=

∫ exp(�@C + �8@C)
1 +∑

9′ exp(� 9′C + �8 9C)

(
1 −

exp(�@C + �8@C)
1 +∑

9′ exp(� 9′C + �8 9C)

)
3P�8·C

=

∫
#@($8·C)

(
1 − #@($8·C)

)
3P�8·C

=
1
=

∑
8

∫
#@($8·C(�8))

(
1 − #@($8·C(�8))

)
)(�8)3�8

is uniformly bounded22 between 0 and 1, and

%B@C(�·C , �> , �D)
%�>

=
1
=

∑
8

∫ ∑
@

#@($8·C)
(
1 − #@($8·C)

) %$8@C
%�>

)(�8)3�8

Here P�8·C is the probability measure of �8·C . Combine the results and we obtain

3

3�
B8 9C(�(�), �) =

∫ �∑
@=1

(
1{@ = 9} − #@($8.C)

)
# 9($8.C)

[
3�@C(�> , �D)

3�
+
3$8@C
3�

]
)(�8)3�8

To calculate 3

3�
B8 9C(�(�), �), it suffices to first calculate the partial derivatives with respect

to �> and �D as if � is given as data, then calculate 3
3� B8 9C plugging in the partial derivatives.

F.3 Derivatives of the SMM objective function

By the definition, the objective function is ‖"=(�)‖22 = ‖=−1 ∑=
8=1

∑�

9=0(.8 9 − B̂8 9(�))/8 9 ‖
2
2.

The first-order derivative is

��‖"=(�)‖22 = 2 [��′"=(�)]"=(�)

where the 3�-by-3� matrix

��′"=(�) = −
1
=

=∑
8=1

�∑
9=0

/8 9�� B̂8 9(�) = −
1
=

=∑
8=1

�∑
9=0

/8 9
1
�

�∑
1=1

B8 91(�)
�∑
:=1
(�{: = 9} − B8:1(�))

3$8:1(�)
3�

22Its inverse, however, has an increasing upper bound that grows at the rate of $(�) almost surely (cf. the
previously derivatives with respect to �).
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The second-order derivative is

�2
�‖"=(�)‖22 = 2

[
��′"(�)

]
��"(�) +

3∑
9=1

2" 9(�)�2
�" 9(�)

F.4 Quadratic Approximation (QA)

We revisit the quadratic approximation in Andrews (1999) for references. To show that

5 (�0) + �� 5 (�0)(� − �0) +
1
2(� − �0)′�2

� 5 (�0)(� − �0) + '(�, �0)

= 5 (�0) −
1
2�� 5 (�0)

[
�2
� 5 (�0)′

]−1
��′ 5 (�0) +

1
2# @(

√
#(� − �0)) + '(�, �0)

with

@(G) :=
(
G +

[
�2
� 5 (�0)

]−1
#1/2��′ 5 (�0)

)′
�2
� 5 (�0)

(
G +

[
�2
� 5 (�0)

]−1
#1/2��′ 5 (�0)

)
Firstly, expand the quadratic term @(G) and use the fact that �2

� 5 (�0) is symmetric,

@(G) =G′�2
� 5 (�0)G

+ #1/2�� 5 (�0)
[
�2
� 5 (�0)

]−1
�2
� 5 (�0)

[
�2
� 5 (�0)

]−1
#1/2��′ 5 (�0)

+ G′�2
� 5 (�0)

[
�2
� 5 (�0)

]−1
#1/2��′ 5 (�0)

+ #1/2�� 5 (�0)
[
�2
� 5 (�0)

]−1
�2
� 5 (�0)G

=G′�2
� 5 (�0)G + #�� 5 (�0)

[
�2
� 5 (�0)

]−1
��′ 5 (�0)

+ 2#1/2�� 5 (�0)G

Plugging in G =
√
#(� − �0), then

1
2# @(

√
#(�−�0)) =

1
2(�−�0)′�2

� 5 (�0)(�−�0)+
1
2�� 5 (�0)

[
�2
� 5 (�0)

]−1
��′ 5 (�0)+�� 5 (�0)(�−�0)

Rearrange the equation and the proof is done.
Another interesting result is about the difference:

5 (�) − 5 (�0) = −
1
2�� 5 (�0)

[
�2
� 5 (�0)′

]−1
��′ 5 (�0) +

1
2# @(

√
#(� − �0)) + '(�, �0)

For simplicity, assume that '(�, �0) = 0 for all �. To solve inf�∈Θ 5 (�) − 5 (�0), or equiv-
alently, inf�∈Θ 5 (�), it is identical to solve inf�∈Θ(2#)−1@(

√
#(� − �0)). Since our Θ is the
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product of R’s and [0,∞)’s, then the shifted parameter space Θ − �0 is either the prod-
uct of only R’s (if �9’s are all positive numbers) or the product of R’s and [0,∞)’s (if at
least one �9 = 0). This suggests

√
#(Θ − �0) = Θ − �0, so inf�∈Θ(2#)−1@(

√
#(� − �0)) =

inf�∈Θ−�0(2#)−1@(�). Note that @(·) is a quadratic function. If �2
� 5 (�0) is positive (semi-

)definite, then
√
G′�2

� 5 (�0)G induced a (semi-)norm ‖ · ‖ and

inf
�∈Θ−�0

@1/2(�) = inf
�∈Θ−�0

‖� +
[
�2
� 5 (�0)

]−1
#1/2��′ 5 (�0)‖

The solution, denoted by �̃, is the projection of
[
�2
� 5 (�0)

]−1
#1/2��′ 5 (�0) ontoΘ−�0. An-

drews (1999) claims theorthogonalproperty that �̃′�2
� 5 (�0)(�̃+

[
�2
� 5 (�0)

]−1
#1/2��′ 5 (�0)) =

0. To see this, if Θ − �0 = [0,∞) and �2
� 5 (�0) = 1 so that ‖ · ‖ is the Euclidean norm,

then �̃ = 0 if #1/2��′ 5 (�0) ≥ 0 and �̃ = −#1/2��′ 5 (�0) if #1/2��′ 5 (�0) < 0. Hence,
�̃′�2

� 5 (�0)�̃ = −�̃′#1/2��′ 5 (�0). Therefore, if �̂ minimizes 5 (�) over Θ, then plug in the
formula of @(G) and

5 (�̂) − 5 (�0) = −
1
2�� 5 (�0)

[
�2
� 5 (�0)′

]−1
��′ 5 (�0) +

1
2# @(�̃)

=
1

2#

(
�̃′�2

� 5 (�0)�̃ + 2#1/2�� 5 (�0)�̃
)

=
1

2#

(
�̃′�2

� 5 (�0)�̃ − 2�̃′�2
� 5 (�0)�̃

)
= − 1

2# �̃′�2
� 5 (�0)�̃

which is the 3(c) in Theorem 3 in Andrews (1999).

F.5 QA of the CDML Loss

Next, we plug in the CDML objective function 5 (�) = ‖"(�)‖22 which is the squared
;2-norm of a 3-by-1 vector. By the definition, ‖"(�)‖22 =

∑3
9=1 "

2
9
(�), then some algebra

shows

��‖"(�)‖22 =
3∑
9=1

��"
2
9 (�) =

3∑
9=1

2" 9(�)��′" 9(�)

= 2
©­­­«
��1"1(�) · · · ��1"3(�)

...
. . .

...

��3"1(�) · · · ��3"3(�)

ª®®®¬
©­­­«
"1(�)
...

"3(�)

ª®®®¬
= 2

[
��′"(�)

]
"(�)
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�2
�‖"(�)‖22 =

3∑
9=1

2��

©­­­«
" 9(�)��1" 9(�)

...

" 9(�)��3" 9(�)

ª®®®¬
=

3∑
9=1

2
©­­­«
��1

[
" 9(�)��1" 9(�)

]
· · · ��3

[
" 9(�)��1" 9(�)

]
...

. . .
...

��1

[
" 9(�)��3" 9(�)

] ... ��3

[
" 9(�)��3" 9(�)

] ª®®®¬
=

3∑
9=1

2
©­­­«
�11 · · · �31
...

. . .
...

�13 · · · �33

ª®®®¬
where �:; :=

[
��:" 9(�)

]
��;" 9(�) +" 9(�)

[
��:��;" 9(�)

]
=

3∑
9=1

2
[
��′" 9(�)

]
��" 9(�) + 2" 9(�)�2

�" 9(�)

= 2
[
��′"(�)

]
��"(�) +

3∑
9=1

2" 9(�)�2
�" 9(�)

and if the remainder term is 0, by the previous subsection,

‖"(�̂)‖22 − ‖"(�)‖22 = −
1

2# �̃′�2
�‖"(�)‖22�̃

where �̂ = arg min�∈Θ ‖"(�̂)‖22 and

�̃ = arg min
G∈Θ−�0

(
G +

[
�2
�‖"(�0)‖22

]−1
#1/2��‖"(�0)‖22

)′
�2
�‖"(�0)‖22

(
G +

[
�2
�‖"(�0)‖22

]−1
#1/2��‖"(�0)‖22

)
We further plug in the score function. Given"(�) = ��′!(�;�)−���′!(�;�), obviously

" 9(�) = ��9!(�;�) − �9��!(�;�) and ��:" 9(�) = ��:��9!(�;�) − �9��:��!(�;�), where
�9 is the 9-th row of � . Then,

��′"(�) =
©­­­«
��1��1!(�;�) − �1��1��!(�;�) · · · ��1��3!(�;�) − �3��1��!(�;�)

...
. . .

...

��3��1!(�;�) − �1��3��!(�;�) · · · ��1��1!(�;�) − �3��3��!(�;�)

ª®®®¬
= �2

�!(�;�) − ���!(�;�)�′

�2
�" 9(�) = �2

���9!(�;�) − �2
��9��!(�;�)
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Note that ��′"(�) is not symmetric even at the true value (�, �, �) = (�0, �0, �0). For the
second equation, the first term, as the third-order derivative, is simpler:

�2
���9!(�;�) =

©­­­«
�119 · · · �319
...

. . .
...

�139 · · · �339

ª®®®¬ where �:; 9 := %3

%�:%�;%�9
!(�;�)

The second term ismore trickyas�9 is a 1-by-? vector and�9��!(�;�) = ∑?

@=1 �9@��@!(�;�),
hence,

�2
��9��!(�;�) =

?∑
@=1

�9@�
2
���@!(�;�)

=

?∑
@=1

�9@

©­­­«
!11@ · · · !31@
...

. . .
...

!13@ · · · !33@

ª®®®¬ where !:;@ := %3

%�:%�;%�@
!(�;�)

F.6 QA of the Generalized CDML Loss

The generalized CDML loss function contains a GMM-type weighting matrix 5 (�) =
"(�)′,"(�) = ∑3

9=1
∑3
:=1 " 9(�)":(�),9: , where, is assumed to be symmetric.

F.7 Non-negative Quadratic Programming

Consider the following quadratic programming problem with a non-negative constraint
on the scalar G2:

min
G1∈R3 ,G2≥0

(
G′1 + 1′1, G′2 + 1′2

) (
� �

� �

) (
G1 + 11

G2 + 12

)
Here � ∈ R3×3 is assumed symmetric and positive definite, � > 0, � is a 3-by-1 vector and
� is a 1-by-3 vector. Expand the quadratic function and we obtain the objective function

(G1 + 11)′�(G1 + 11) + (G2 + 12)�(G1 + 11) + (G1 + 11)′�(G2 + 12) + (G2 + 12)2�

The associated Lagrangian is

!(G,�) = (G1 + 11)′�(G1 + 11) + (G2 + 12)(� + �′)(G1 + 11) + (G2 + 12)2� − �G2, � ≥ 0
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Then, the first-order conditions are

∇G1!(G,�) = 2�′(G1 + 11) + (�′ + �)(G2 + 12) = 0

∇G2!(G,�) = (� + �′)(G1 + 11) + 2�(G2 + 12) − � = 0

and the complement slackness condition is

� ≥ 0 and �G2 = 0

When G∗2 = 0,

G∗1 = −
1
2�
−1(�′ + �)12 − 11 and �∗ =

(
2� − 1

2(� + �
′)�−1(�′ + �)

)
12

where �∗ > 0 needs to be verified. When �∗ ≤ 0,

G∗1 = −11 and G∗2 = −12

F.8 Inequalities

Lemma 4. For any � ∈ R=×< and 1 ∈ R< , the following inequality holds

‖�1‖2 ≤ ‖�‖�‖1‖2

where ‖�‖� =
√∑=

8=1
∑<
9=1 �

2
8 9
is the Frobenius norm and ‖1‖2 =

√∑<
8=1 1

2
8
is the Euclidean

norm.

Proof of Lemma 4. It suffices to show that ‖�1‖22 ≤ ‖�‖2�‖1‖
2
2. Let �8∗ be the 8-th row of �,

then

‖�1‖22 =
=∑
8=1
(�8∗1)2 =

=∑
8=1

©­«
<∑
9=1

�8 91 9
ª®¬

2

≤
=∑
8=1

©­«
<∑
9=1

�2
8 9

ª®¬ ©­«
<∑
9=1

12
9

ª®¬ = ©­«
<∑
9=1

12
9

ª®¬ ©­«
=∑
8=1

<∑
9=1

�2
8 9

ª®¬
= ‖1‖22‖�‖2�

where we apply Cauchy-Schwarz inequality (∑<
9=1 �8 91 9)2 ≤ (

∑<
9=1 �

2
8 9
)(∑<

9=1 1
2
9
) to com-

plete the proof. �

Lemma 5 (McDiarmid’s Inequality). Suppose that -1, . . . , -= ∈ X are independent random
vectors and / = 5 (-1, . . . , -=) is a random variable where 5 has the bounded difference property:
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there exists some non-negative constants 21, . . . , 2= such that

E| 5 (-1, . . . , -=) − 5 (-1, . . . , -8−1, -
′
8 , -8+1, . . . , -=)| ≤ 28 , 1 ≤ 8 ≤ =

Then,

P(|/ − E[/]| > C) ≤ 2 exp

(
− 2C2∑=

8=1 2
2
8

)
for all C > 0

Lemma 6 (Kennedy, 2023). Let 5 (,8 , �) be a 3-dimensional vector-valued function of data,8

and a parameter � ∈ Θ. Let �̂ ∈ Θ be the estimator from a sample ,# = (,=+1, . . . ,,# ), P
denote the measure conditional on ,# , and P= denote the empirical measure over i.i.d. samples
,= = (,1, . . . ,,=), which is independent of,# . Then,

1. If 3 = 1, then

G=( 5 (�̂) − 5 (�)) :=
√
=(P= − P)

(
5 (�̂) − 5 (�)

)
= $P

(
P[( 5 (�̂) − 5 (�))2]

√
=

)
2. For any 3 ∈ N,

E,=

[
‖G=( 5 (�̂))‖ | ,#

]
≤ E,=

[
‖ 5 (�̂) − 5 (�)‖22 | ,#

]
Proof of Lemma 6. The key idea in the proof is that �̂ can be taken as a constant con-
ditional on ,# . The first result is directly from Kennedy et al. (2020) and we ex-
cerpt the proof here for readers’ references. Notice that the empirical process term
G=( 5 (�̂)) = =1/2

[
P= 5 (�̂) − P 5 (�̂)

]
has mean zero conditional on,# since

E,=

[
P=( 5 (�̂) − 5 (�)) | ,#

]
= E,=

[
5 (�̂) − 5 (�) | ,#

]
= P( 5 (�̂) − 5 (�))

By the i.i.d. assumption, the conditional variance is

+0A
(
G=( 5 (�̂) − 5 (�)) | ,#

)
= +0A

(
=1/2P=( 5 (�̂) − 5 (�)) | ,#

)
= =−1+0A

(
5 (�̂) − 5 (�) | ,#

)
= =−1

{
E,=

[
( 5 (�̂) − 5 (�))2 | ,#

]
−

(
E,=

[
5 (�̂) − 5 (�) | ,#

] )2
}

≤ =−1P( 5 (�̂) − 5 (�))2
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Then, by the law of iterated expectation and Chebyshev’s inequality,

%A
©­­«
G=( 5 (�̂) − 5 (�))√
=−1P( 5 (�̂) − 5 (�))2

≥ C
ª®®¬ = E

%A
©­­«
G=( 5 (�̂) − 5 (�))√
=−1P( 5 (�̂) − 5 (�))2

≥ C
����,#

ª®®¬


≤ E


1
C2

+0A
(
G=( 5 (�̂) − 5 (�)) | ,#

)
=−1P( 5 (�̂) − 5 (�))2


≤ C−2

For any given & > 0, one can pick C = &−1/2 and the proof is done.
The second result is mentioned in Chernozhukov et al. (2018, C56) but we have the

inequality. The proof is quite similar. The conditional variance is now a 3-by-3 matrix:

E,=

[
=−1G=( 5 (�̂) − 5 (�))G=( 5 (�̂) − 5 (�))′ | ,#

]
= +0A

(
=−1/2G=( 5 (�̂) − 5 (�)) | ,#

)
= =−1+0A

(
5 (�̂) − 5 (�) | ,#

)
= =−1P

{(
5 (�̂) − 5 (�)

) (
5 (�̂) − 5 (�)

)′}
− =−1

{
P

(
5 (�̂) − 5 (�)

)} {
P

(
5 (�̂) − 5 (�)

)}′
where the first line is because of the zero conditional mean. Drop the =−1 and take trace
on both sides, and we obtain

E,=

[
‖G=( 5 (�̂) − 5 (�))‖22 | ,#

]
= E,=

[
‖ 5 (�̂) − 5 (�)‖22 | ,#

]
− ‖E,= [ 5 (�̂)− 5 (�) | ,#]‖22

Then, the proof is done as the second term on the right-hand side is non-negative. �

Lemma 7 (Hoeffding’s Inequality for Bounded Random Variables). Let ,1, . . . ,,# be
independent random variables. Assume that,8 ∈ [<8 ,,8] for every 8 = 1, . . . , # . Then, for any
C > 0,

P

(
1
#

����� #∑
8=1

-8 − E-8

����� ≥ C
)
≤ 2 exp

(
− 2#2C2∑#

8=1("8 − <8)2

)
Proof of Lemma 7. See Theorem 2.2.6 in Vershynin (2018). �
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